Upgrading dependencies to include logrus.

This commit is contained in:
Renan DelValle 2018-11-09 15:58:49 -08:00
parent bc28198c2d
commit c03901c0f1
No known key found for this signature in database
GPG key ID: C240AD6D6F443EC9
379 changed files with 90030 additions and 47 deletions

416
vendor/golang.org/x/crypto/bn256/bn256.go generated vendored Normal file
View file

@ -0,0 +1,416 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
//
// (This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
package bn256 // import "golang.org/x/crypto/bn256"
import (
"crypto/rand"
"io"
"math/big"
)
// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (e *G1) String() string {
return "bn256.G1" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(curveGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Negative(a.p)
return e
}
// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p.IsInfinity() {
return make([]byte, numBytes*2)
}
e.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(e.p.x, p).Bytes()
yBytes := new(big.Int).Mod(e.p.y, p).Bytes()
ret := make([]byte, numBytes*2)
copy(ret[1*numBytes-len(xBytes):], xBytes)
copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, false
}
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
e.p.z.SetInt64(0)
e.p.t.SetInt64(0)
} else {
e.p.z.SetInt64(1)
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
return "bn256.G2" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(twistGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if n.p.IsInfinity() {
return make([]byte, numBytes*4)
}
n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
ret := make([]byte, numBytes*4)
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, false
}
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
e.p.y.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Exp(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Mul(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes()
xxyBytes := n.p.x.x.y.Bytes()
xyxBytes := n.p.x.y.x.Bytes()
xyyBytes := n.p.x.y.y.Bytes()
xzxBytes := n.p.x.z.x.Bytes()
xzyBytes := n.p.x.z.y.Bytes()
yxxBytes := n.p.y.x.x.Bytes()
yxyBytes := n.p.y.x.y.Bytes()
yyxBytes := n.p.y.y.x.Bytes()
yyyBytes := n.p.y.y.y.Bytes()
yzxBytes := n.p.y.z.x.Bytes()
yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes {
return nil, false
}
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
}
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
bns []*big.Int
count int
}
func (pool *bnPool) Get() *big.Int {
if pool == nil {
return new(big.Int)
}
pool.count++
l := len(pool.bns)
if l == 0 {
return new(big.Int)
}
bn := pool.bns[l-1]
pool.bns = pool.bns[:l-1]
return bn
}
func (pool *bnPool) Put(bn *big.Int) {
if pool == nil {
return
}
pool.bns = append(pool.bns, bn)
pool.count--
}
func (pool *bnPool) Count() int {
return pool.count
}

304
vendor/golang.org/x/crypto/bn256/bn256_test.go generated vendored Normal file
View file

@ -0,0 +1,304 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"bytes"
"crypto/rand"
"math/big"
"testing"
)
func TestGFp2Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp2(pool)
a.x.SetString("23423492374", 10)
a.y.SetString("12934872398472394827398470", 10)
inv := newGFp2(pool)
inv.Invert(a, pool)
b := newGFp2(pool).Mul(inv, a, pool)
if b.x.Int64() != 0 || b.y.Int64() != 1 {
t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func isZero(n *big.Int) bool {
return new(big.Int).Mod(n, p).Int64() == 0
}
func isOne(n *big.Int) bool {
return new(big.Int).Mod(n, p).Int64() == 1
}
func TestGFp6Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp6(pool)
a.x.x.SetString("239487238491", 10)
a.x.y.SetString("2356249827341", 10)
a.y.x.SetString("082659782", 10)
a.y.y.SetString("182703523765", 10)
a.z.x.SetString("978236549263", 10)
a.z.y.SetString("64893242", 10)
inv := newGFp6(pool)
inv.Invert(a, pool)
b := newGFp6(pool).Mul(inv, a, pool)
if !isZero(b.x.x) ||
!isZero(b.x.y) ||
!isZero(b.y.x) ||
!isZero(b.y.y) ||
!isZero(b.z.x) ||
!isOne(b.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestGFp12Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp12(pool)
a.x.x.x.SetString("239846234862342323958623", 10)
a.x.x.y.SetString("2359862352529835623", 10)
a.x.y.x.SetString("928836523", 10)
a.x.y.y.SetString("9856234", 10)
a.x.z.x.SetString("235635286", 10)
a.x.z.y.SetString("5628392833", 10)
a.y.x.x.SetString("252936598265329856238956532167968", 10)
a.y.x.y.SetString("23596239865236954178968", 10)
a.y.y.x.SetString("95421692834", 10)
a.y.y.y.SetString("236548", 10)
a.y.z.x.SetString("924523", 10)
a.y.z.y.SetString("12954623", 10)
inv := newGFp12(pool)
inv.Invert(a, pool)
b := newGFp12(pool).Mul(inv, a, pool)
if !isZero(b.x.x.x) ||
!isZero(b.x.x.y) ||
!isZero(b.x.y.x) ||
!isZero(b.x.y.y) ||
!isZero(b.x.z.x) ||
!isZero(b.x.z.y) ||
!isZero(b.y.x.x) ||
!isZero(b.y.x.y) ||
!isZero(b.y.y.x) ||
!isZero(b.y.y.y) ||
!isZero(b.y.z.x) ||
!isOne(b.y.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestCurveImpl(t *testing.T) {
pool := new(bnPool)
g := &curvePoint{
pool.Get().SetInt64(1),
pool.Get().SetInt64(-2),
pool.Get().SetInt64(1),
pool.Get().SetInt64(0),
}
x := pool.Get().SetInt64(32498273234)
X := newCurvePoint(pool).Mul(g, x, pool)
y := pool.Get().SetInt64(98732423523)
Y := newCurvePoint(pool).Mul(g, y, pool)
s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
if s1.x.Cmp(s2.x) != 0 ||
s2.x.Cmp(s1.x) != 0 {
t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
}
pool.Put(x)
X.Put(pool)
pool.Put(y)
Y.Put(pool)
s1.Put(pool)
s2.Put(pool)
g.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestOrderG1(t *testing.T) {
g := new(G1).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G1 has incorrect order")
}
one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
t.Errorf("1+0 != 1 in G1")
}
}
func TestOrderG2(t *testing.T) {
g := new(G2).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G2 has incorrect order")
}
one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.x.Cmp(one.p.x.x) != 0 ||
g.p.x.y.Cmp(one.p.x.y) != 0 ||
g.p.y.x.Cmp(one.p.y.x) != 0 ||
g.p.y.y.Cmp(one.p.y.y) != 0 {
t.Errorf("1+0 != 1 in G2")
}
}
func TestOrderGT(t *testing.T) {
gt := Pair(&G1{curveGen}, &G2{twistGen})
g := new(GT).ScalarMult(gt, Order)
if !g.p.IsOne() {
t.Error("GT has incorrect order")
}
}
func TestBilinearity(t *testing.T) {
for i := 0; i < 2; i++ {
a, p1, _ := RandomG1(rand.Reader)
b, p2, _ := RandomG2(rand.Reader)
e1 := Pair(p1, p2)
e2 := Pair(&G1{curveGen}, &G2{twistGen})
e2.ScalarMult(e2, a)
e2.ScalarMult(e2, b)
minusE2 := new(GT).Neg(e2)
e1.Add(e1, minusE2)
if !e1.p.IsOne() {
t.Fatalf("bad pairing result: %s", e1)
}
}
}
func TestG1Marshal(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G1).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G1).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG2Marshal(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G2).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G2).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG1Identity(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestG2Identity(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestTripartiteDiffieHellman(t *testing.T) {
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k1Bytes := k1.Marshal()
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k2Bytes := k2.Marshal()
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
k3Bytes := k3.Marshal()
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
t.Errorf("keys didn't agree")
}
}
func BenchmarkPairing(b *testing.B) {
for i := 0; i < b.N; i++ {
Pair(&G1{curveGen}, &G2{twistGen})
}
}

44
vendor/golang.org/x/crypto/bn256/constants.go generated vendored Normal file
View file

@ -0,0 +1,44 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime: 1868033³.
var u = bigFromBase10("6518589491078791937")
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var p = bigFromBase10("65000549695646603732796438742359905742825358107623003571877145026864184071783")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+3.
var xiToPMinus1Over6 = &gfP2{bigFromBase10("8669379979083712429711189836753509758585994370025260553045152614783263110636"), bigFromBase10("19998038925833620163537568958541907098007303196759855091367510456613536016040")}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+3.
var xiToPMinus1Over3 = &gfP2{bigFromBase10("26098034838977895781559542626833399156321265654106457577426020397262786167059"), bigFromBase10("15931493369629630809226283458085260090334794394361662678240713231519278691715")}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+3.
var xiToPMinus1Over2 = &gfP2{bigFromBase10("50997318142241922852281555961173165965672272825141804376761836765206060036244"), bigFromBase10("38665955945962842195025998234511023902832543644254935982879660597356748036009")}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+3.
var xiToPSquaredMinus1Over3 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437752")
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+3 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = bigFromBase10("4985783334309134261147736404674766913742361673560802634030")
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+3 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437753")
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+3.
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19885131339612776214803633203834694332692106372356013117629940868870585019582"), bigFromBase10("21645619881471562101905880913352894726728173167203616652430647841922248593627")}

287
vendor/golang.org/x/crypto/bn256/curve.go generated vendored Normal file
View file

@ -0,0 +1,287 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
x, y, z, t *big.Int
}
var curveB = new(big.Int).SetInt64(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(-2),
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(1),
}
func newCurvePoint(pool *bnPool) *curvePoint {
return &curvePoint{
pool.Get(),
pool.Get(),
pool.Get(),
pool.Get(),
}
}
func (c *curvePoint) String() string {
c.MakeAffine(new(bnPool))
return "(" + c.x.String() + ", " + c.y.String() + ")"
}
func (c *curvePoint) Put(pool *bnPool) {
pool.Put(c.x)
pool.Put(c.y)
pool.Put(c.z)
pool.Put(c.t)
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
yy := new(big.Int).Mul(c.y, c.y)
xxx := new(big.Int).Mul(c.x, c.x)
xxx.Mul(xxx, c.x)
yy.Sub(yy, xxx)
yy.Sub(yy, curveB)
if yy.Sign() < 0 || yy.Cmp(p) >= 0 {
yy.Mod(yy, p)
}
return yy.Sign() == 0
}
func (c *curvePoint) SetInfinity() {
c.z.SetInt64(0)
}
func (c *curvePoint) IsInfinity() bool {
return c.z.Sign() == 0
}
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z1z1 := pool.Get().Mul(a.z, a.z)
z1z1.Mod(z1z1, p)
z2z2 := pool.Get().Mul(b.z, b.z)
z2z2.Mod(z2z2, p)
u1 := pool.Get().Mul(a.x, z2z2)
u1.Mod(u1, p)
u2 := pool.Get().Mul(b.x, z1z1)
u2.Mod(u2, p)
t := pool.Get().Mul(b.z, z2z2)
t.Mod(t, p)
s1 := pool.Get().Mul(a.y, t)
s1.Mod(s1, p)
t.Mul(a.z, z1z1)
t.Mod(t, p)
s2 := pool.Get().Mul(b.y, t)
s2.Mod(s2, p)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := pool.Get().Sub(u2, u1)
xEqual := h.Sign() == 0
t.Add(h, h)
// i = 4h²
i := pool.Get().Mul(t, t)
i.Mod(i, p)
// j = 4h³
j := pool.Get().Mul(h, i)
j.Mod(j, p)
t.Sub(s2, s1)
yEqual := t.Sign() == 0
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := pool.Get().Add(t, t)
v := pool.Get().Mul(u1, i)
v.Mod(v, p)
// t4 = 4(s2-s1)²
t4 := pool.Get().Mul(r, r)
t4.Mod(t4, p)
t.Add(v, v)
t6 := pool.Get().Sub(t4, j)
c.x.Sub(t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
t.Sub(v, c.x) // t7
t4.Mul(s1, j) // t8
t4.Mod(t4, p)
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
t4.Mod(t4, p)
c.y.Sub(t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
t.Add(a.z, b.z) // t11
t4.Mul(t, t) // t12
t4.Mod(t4, p)
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h)
c.z.Mod(c.z, p)
pool.Put(z1z1)
pool.Put(z2z2)
pool.Put(u1)
pool.Put(u2)
pool.Put(t)
pool.Put(s1)
pool.Put(s2)
pool.Put(h)
pool.Put(i)
pool.Put(j)
pool.Put(r)
pool.Put(v)
pool.Put(t4)
pool.Put(t6)
}
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := pool.Get().Mul(a.x, a.x)
A.Mod(A, p)
B := pool.Get().Mul(a.y, a.y)
B.Mod(B, p)
C := pool.Get().Mul(B, B)
C.Mod(C, p)
t := pool.Get().Add(a.x, B)
t2 := pool.Get().Mul(t, t)
t2.Mod(t2, p)
t.Sub(t2, A)
t2.Sub(t, C)
d := pool.Get().Add(t2, t2)
t.Add(A, A)
e := pool.Get().Add(t, A)
f := pool.Get().Mul(e, e)
f.Mod(f, p)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y)
t2.Mod(t2, p)
c.y.Sub(t2, t)
t.Mul(a.y, a.z)
t.Mod(t, p)
c.z.Add(t, t)
pool.Put(A)
pool.Put(B)
pool.Put(C)
pool.Put(t)
pool.Put(t2)
pool.Put(d)
pool.Put(e)
pool.Put(f)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
sum := newCurvePoint(pool)
sum.SetInfinity()
t := newCurvePoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
return c
}
if c.IsInfinity() {
c.x.SetInt64(0)
c.y.SetInt64(1)
c.z.SetInt64(0)
c.t.SetInt64(0)
return c
}
zInv := pool.Get().ModInverse(c.z, p)
t := pool.Get().Mul(c.y, zInv)
t.Mod(t, p)
zInv2 := pool.Get().Mul(zInv, zInv)
zInv2.Mod(zInv2, p)
c.y.Mul(t, zInv2)
c.y.Mod(c.y, p)
t.Mul(c.x, zInv2)
t.Mod(t, p)
c.x.Set(t)
c.z.SetInt64(1)
c.t.SetInt64(1)
pool.Put(zInv)
pool.Put(t)
pool.Put(zInv2)
return c
}
func (c *curvePoint) Negative(a *curvePoint) {
c.x.Set(a.x)
c.y.Neg(a.y)
c.z.Set(a.z)
c.t.SetInt64(0)
}

43
vendor/golang.org/x/crypto/bn256/example_test.go generated vendored Normal file
View file

@ -0,0 +1,43 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"crypto/rand"
)
func ExamplePair() {
// This implements the tripartite Diffie-Hellman algorithm from "A One
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
// Each of three parties, a, b and c, generate a private value.
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
// Then each party calculates g₁ and g₂ times their private value.
pa := new(G1).ScalarBaseMult(a)
qa := new(G2).ScalarBaseMult(a)
pb := new(G1).ScalarBaseMult(b)
qb := new(G2).ScalarBaseMult(b)
pc := new(G1).ScalarBaseMult(c)
qc := new(G2).ScalarBaseMult(c)
// Now each party exchanges its public values with the other two and
// all parties can calculate the shared key.
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
// k1, k2 and k3 will all be equal.
}

200
vendor/golang.org/x/crypto/bn256/gfp12.go generated vendored Normal file
View file

@ -0,0 +1,200 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y *gfP6 // value is xω + y
}
func newGFp12(pool *bnPool) *gfP12 {
return &gfP12{newGFp6(pool), newGFp6(pool)}
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) Minimal() {
e.x.Minimal()
e.y.Minimal()
}
func (e *gfP12) IsZero() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Set(a.y)
return a
}
func (e *gfP12) Negative(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Negative(a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
e.x.Frobenius(a.x, pool)
e.y.Frobenius(a.y, pool)
e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
e.x.FrobeniusP2(a.x)
e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
tx := newGFp6(pool)
tx.Mul(a.x, b.y, pool)
t := newGFp6(pool)
t.Mul(b.x, a.y, pool)
tx.Add(tx, t)
ty := newGFp6(pool)
ty.Mul(a.y, b.y, pool)
t.Mul(a.x, b.x, pool)
t.MulTau(t, pool)
e.y.Add(ty, t)
e.x.Set(tx)
tx.Put(pool)
ty.Put(pool)
t.Put(pool)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
e.x.Mul(e.x, b, pool)
e.y.Mul(e.y, b, pool)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
sum := newGFp12(pool)
sum.SetOne()
t := newGFp12(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
// Complex squaring algorithm
v0 := newGFp6(pool)
v0.Mul(a.x, a.y, pool)
t := newGFp6(pool)
t.MulTau(a.x, pool)
t.Add(a.y, t)
ty := newGFp6(pool)
ty.Add(a.x, a.y)
ty.Mul(ty, t, pool)
ty.Sub(ty, v0)
t.MulTau(v0, pool)
ty.Sub(ty, t)
e.y.Set(ty)
e.x.Double(v0)
v0.Put(pool)
t.Put(pool)
ty.Put(pool)
return e
}
func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1 := newGFp6(pool)
t2 := newGFp6(pool)
t1.Square(a.x, pool)
t2.Square(a.y, pool)
t1.MulTau(t1, pool)
t1.Sub(t2, t1)
t2.Invert(t1, pool)
e.x.Negative(a.x)
e.y.Set(a.y)
e.MulScalar(e, t2, pool)
t1.Put(pool)
t2.Put(pool)
return e
}

219
vendor/golang.org/x/crypto/bn256/gfp2.go generated vendored Normal file
View file

@ -0,0 +1,219 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP2 implements a field of size p² as a quadratic extension of the base
// field where i²=-1.
type gfP2 struct {
x, y *big.Int // value is xi+y.
}
func newGFp2(pool *bnPool) *gfP2 {
return &gfP2{pool.Get(), pool.Get()}
}
func (e *gfP2) String() string {
x := new(big.Int).Mod(e.x, p)
y := new(big.Int).Mod(e.y, p)
return "(" + x.String() + "," + y.String() + ")"
}
func (e *gfP2) Put(pool *bnPool) {
pool.Put(e.x)
pool.Put(e.y)
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(0)
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(1)
return e
}
func (e *gfP2) Minimal() {
if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 {
e.x.Mod(e.x, p)
}
if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 {
e.y.Mod(e.y, p)
}
}
func (e *gfP2) IsZero() bool {
return e.x.Sign() == 0 && e.y.Sign() == 0
}
func (e *gfP2) IsOne() bool {
if e.x.Sign() != 0 {
return false
}
words := e.y.Bits()
return len(words) == 1 && words[0] == 1
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(a.y)
e.x.Neg(a.x)
return e
}
func (e *gfP2) Negative(a *gfP2) *gfP2 {
e.x.Neg(a.x)
e.y.Neg(a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP2) Double(a *gfP2) *gfP2 {
e.x.Lsh(a.x, 1)
e.y.Lsh(a.y, 1)
return e
}
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
sum := newGFp2(pool)
sum.SetOne()
t := newGFp2(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
tx := pool.Get().Mul(a.x, b.y)
t := pool.Get().Mul(b.x, a.y)
tx.Add(tx, t)
tx.Mod(tx, p)
ty := pool.Get().Mul(a.y, b.y)
t.Mul(a.x, b.x)
ty.Sub(ty, t)
e.y.Mod(ty, p)
e.x.Set(tx)
pool.Put(tx)
pool.Put(ty)
pool.Put(t)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
e.x.Mul(a.x, b)
e.y.Mul(a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+3 and then returns e.
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
// (xi+y)(i+3) = (3x+y)i+(3y-x)
tx := pool.Get().Lsh(a.x, 1)
tx.Add(tx, a.x)
tx.Add(tx, a.y)
ty := pool.Get().Lsh(a.y, 1)
ty.Add(ty, a.y)
ty.Sub(ty, a.x)
e.x.Set(tx)
e.y.Set(ty)
pool.Put(tx)
pool.Put(ty)
return e
}
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
// Complex squaring algorithm:
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
t1 := pool.Get().Sub(a.y, a.x)
t2 := pool.Get().Add(a.x, a.y)
ty := pool.Get().Mul(t1, t2)
ty.Mod(ty, p)
t1.Mul(a.x, a.y)
t1.Lsh(t1, 1)
e.x.Mod(t1, p)
e.y.Set(ty)
pool.Put(t1)
pool.Put(t2)
pool.Put(ty)
return e
}
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t := pool.Get()
t.Mul(a.y, a.y)
t2 := pool.Get()
t2.Mul(a.x, a.x)
t.Add(t, t2)
inv := pool.Get()
inv.ModInverse(t, p)
e.x.Neg(a.x)
e.x.Mul(e.x, inv)
e.x.Mod(e.x, p)
e.y.Mul(a.y, inv)
e.y.Mod(e.y, p)
pool.Put(t)
pool.Put(t2)
pool.Put(inv)
return e
}

296
vendor/golang.org/x/crypto/bn256/gfp6.go generated vendored Normal file
View file

@ -0,0 +1,296 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+3.
type gfP6 struct {
x, y, z *gfP2 // value is xτ² + yτ + z
}
func newGFp6(pool *bnPool) *gfP6 {
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
}
func (e *gfP6) String() string {
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
}
func (e *gfP6) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
e.z.Put(pool)
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(a.x)
e.y.Set(a.y)
e.z.Set(a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) Minimal() {
e.x.Minimal()
e.y.Minimal()
e.z.Minimal()
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Negative(a *gfP6) *gfP6 {
e.x.Negative(a.x)
e.y.Negative(a.y)
e.z.Negative(a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
e.x.Conjugate(a.x)
e.y.Conjugate(a.y)
e.z.Conjugate(a.z)
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
e.y.Mul(e.y, xiToPMinus1Over3, pool)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
e.z.Set(a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
e.z.Add(a.z, b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
e.z.Sub(a.z, b.z)
return e
}
func (e *gfP6) Double(a *gfP6) *gfP6 {
e.x.Double(a.x)
e.y.Double(a.y)
e.z.Double(a.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := newGFp2(pool)
v0.Mul(a.z, b.z, pool)
v1 := newGFp2(pool)
v1.Mul(a.y, b.y, pool)
v2 := newGFp2(pool)
v2.Mul(a.x, b.x, pool)
t0 := newGFp2(pool)
t0.Add(a.x, a.y)
t1 := newGFp2(pool)
t1.Add(b.x, b.y)
tz := newGFp2(pool)
tz.Mul(t0, t1, pool)
tz.Sub(tz, v1)
tz.Sub(tz, v2)
tz.MulXi(tz, pool)
tz.Add(tz, v0)
t0.Add(a.y, a.z)
t1.Add(b.y, b.z)
ty := newGFp2(pool)
ty.Mul(t0, t1, pool)
ty.Sub(ty, v0)
ty.Sub(ty, v1)
t0.MulXi(v2, pool)
ty.Add(ty, t0)
t0.Add(a.x, a.z)
t1.Add(b.x, b.z)
tx := newGFp2(pool)
tx.Mul(t0, t1, pool)
tx.Sub(tx, v0)
tx.Add(tx, v1)
tx.Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
t0.Put(pool)
t1.Put(pool)
tx.Put(pool)
ty.Put(pool)
tz.Put(pool)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
e.x.Mul(a.x, b, pool)
e.y.Mul(a.y, b, pool)
e.z.Mul(a.z, b, pool)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
e.x.MulScalar(a.x, b)
e.y.MulScalar(a.y, b)
e.z.MulScalar(a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
tz := newGFp2(pool)
tz.MulXi(a.x, pool)
ty := newGFp2(pool)
ty.Set(a.y)
e.y.Set(a.z)
e.x.Set(ty)
e.z.Set(tz)
tz.Put(pool)
ty.Put(pool)
}
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
v0 := newGFp2(pool).Square(a.z, pool)
v1 := newGFp2(pool).Square(a.y, pool)
v2 := newGFp2(pool).Square(a.x, pool)
c0 := newGFp2(pool).Add(a.x, a.y)
c0.Square(c0, pool)
c0.Sub(c0, v1)
c0.Sub(c0, v2)
c0.MulXi(c0, pool)
c0.Add(c0, v0)
c1 := newGFp2(pool).Add(a.y, a.z)
c1.Square(c1, pool)
c1.Sub(c1, v0)
c1.Sub(c1, v1)
xiV2 := newGFp2(pool).MulXi(v2, pool)
c1.Add(c1, xiV2)
c2 := newGFp2(pool).Add(a.x, a.z)
c2.Square(c2, pool)
c2.Sub(c2, v0)
c2.Add(c2, v1)
c2.Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
c0.Put(pool)
c1.Put(pool)
c2.Put(pool)
xiV2.Put(pool)
return e
}
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := newGFp2(pool)
A := newGFp2(pool)
A.Square(a.z, pool)
t1.Mul(a.x, a.y, pool)
t1.MulXi(t1, pool)
A.Sub(A, t1)
B := newGFp2(pool)
B.Square(a.x, pool)
B.MulXi(B, pool)
t1.Mul(a.y, a.z, pool)
B.Sub(B, t1)
C := newGFp2(pool)
C.Square(a.y, pool)
t1.Mul(a.x, a.z, pool)
C.Sub(C, t1)
F := newGFp2(pool)
F.Mul(C, a.y, pool)
F.MulXi(F, pool)
t1.Mul(A, a.z, pool)
F.Add(F, t1)
t1.Mul(B, a.x, pool)
t1.MulXi(t1, pool)
F.Add(F, t1)
F.Invert(F, pool)
e.x.Mul(C, F, pool)
e.y.Mul(B, F, pool)
e.z.Mul(A, F, pool)
t1.Put(pool)
A.Put(pool)
B.Put(pool)
C.Put(pool)
F.Put(pool)
return e
}

395
vendor/golang.org/x/crypto/bn256/optate.go generated vendored Normal file
View file

@ -0,0 +1,395 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := newGFp2(pool).Mul(p.x, r.t, pool)
D := newGFp2(pool).Add(p.y, r.z)
D.Square(D, pool)
D.Sub(D, r2)
D.Sub(D, r.t)
D.Mul(D, r.t, pool)
H := newGFp2(pool).Sub(B, r.x)
I := newGFp2(pool).Square(H, pool)
E := newGFp2(pool).Add(I, I)
E.Add(E, E)
J := newGFp2(pool).Mul(H, E, pool)
L1 := newGFp2(pool).Sub(D, r.y)
L1.Sub(L1, r.y)
V := newGFp2(pool).Mul(r.x, E, pool)
rOut = newTwistPoint(pool)
rOut.x.Square(L1, pool)
rOut.x.Sub(rOut.x, J)
rOut.x.Sub(rOut.x, V)
rOut.x.Sub(rOut.x, V)
rOut.z.Add(r.z, H)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, r.t)
rOut.z.Sub(rOut.z, I)
t := newGFp2(pool).Sub(V, rOut.x)
t.Mul(t, L1, pool)
t2 := newGFp2(pool).Mul(r.y, J, pool)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(rOut.z, pool)
t.Add(p.y, rOut.z)
t.Square(t, pool)
t.Sub(t, r2)
t.Sub(t, rOut.t)
t2.Mul(L1, p.x, pool)
t2.Add(t2, t2)
a = newGFp2(pool)
a.Sub(t2, t)
c = newGFp2(pool)
c.MulScalar(rOut.z, q.y)
c.Add(c, c)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, L1)
b.MulScalar(b, q.x)
b.Add(b, b)
B.Put(pool)
D.Put(pool)
H.Put(pool)
I.Put(pool)
E.Put(pool)
J.Put(pool)
L1.Put(pool)
V.Put(pool)
t.Put(pool)
t2.Put(pool)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := newGFp2(pool).Square(r.x, pool)
B := newGFp2(pool).Square(r.y, pool)
C := newGFp2(pool).Square(B, pool)
D := newGFp2(pool).Add(r.x, B)
D.Square(D, pool)
D.Sub(D, A)
D.Sub(D, C)
D.Add(D, D)
E := newGFp2(pool).Add(A, A)
E.Add(E, A)
G := newGFp2(pool).Square(E, pool)
rOut = newTwistPoint(pool)
rOut.x.Sub(G, D)
rOut.x.Sub(rOut.x, D)
rOut.z.Add(r.y, r.z)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, B)
rOut.z.Sub(rOut.z, r.t)
rOut.y.Sub(D, rOut.x)
rOut.y.Mul(rOut.y, E, pool)
t := newGFp2(pool).Add(C, C)
t.Add(t, t)
t.Add(t, t)
rOut.y.Sub(rOut.y, t)
rOut.t.Square(rOut.z, pool)
t.Mul(E, r.t, pool)
t.Add(t, t)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, t)
b.MulScalar(b, q.x)
a = newGFp2(pool)
a.Add(r.x, E)
a.Square(a, pool)
a.Sub(a, A)
a.Sub(a, G)
t.Add(B, B)
t.Add(t, t)
a.Sub(a, t)
c = newGFp2(pool)
c.Mul(rOut.z, r.t, pool)
c.Add(c, c)
c.MulScalar(c, q.y)
A.Put(pool)
B.Put(pool)
C.Put(pool)
D.Put(pool)
E.Put(pool)
G.Put(pool)
t.Put(pool)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
a2 := newGFp6(pool)
a2.x.SetZero()
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, ret.x, pool)
t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
t := newGFp2(pool)
t.Add(b, c)
t2 := newGFp6(pool)
t2.x.SetZero()
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(ret.x, ret.y)
ret.y.Set(t3)
ret.x.Mul(ret.x, t2, pool)
ret.x.Sub(ret.x, a2)
ret.x.Sub(ret.x, ret.y)
a2.MulTau(a2, pool)
ret.y.Add(ret.y, a2)
a2.Put(pool)
t3.Put(pool)
t2.Put(pool)
t.Put(pool)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
ret := newGFp12(pool)
ret.SetOne()
aAffine := newTwistPoint(pool)
aAffine.Set(q)
aAffine.MakeAffine(pool)
bAffine := newCurvePoint(pool)
bAffine.Set(p)
bAffine.MakeAffine(pool)
minusA := newTwistPoint(pool)
minusA.Negative(aAffine, pool)
r := newTwistPoint(pool)
r.Set(aAffine)
r2 := newGFp2(pool)
r2.Square(aAffine.y, pool)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret, pool)
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
default:
continue
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := newTwistPoint(pool)
q1.x.Conjugate(aAffine.x)
q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
q1.y.Conjugate(aAffine.y)
q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := newTwistPoint(pool)
minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(q1.y, pool)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
r2.Square(minusQ2.y, pool)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
aAffine.Put(pool)
bAffine.Put(pool)
minusA.Put(pool)
r.Put(pool)
r2.Put(pool)
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
t1 := newGFp12(pool)
// This is the p^6-Frobenius
t1.x.Negative(in.x)
t1.y.Set(in.y)
inv := newGFp12(pool)
inv.Invert(in, pool)
t1.Mul(t1, inv, pool)
t2 := newGFp12(pool).FrobeniusP2(t1, pool)
t1.Mul(t1, t2, pool)
fp := newGFp12(pool).Frobenius(t1, pool)
fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
fp3 := newGFp12(pool).Frobenius(fp2, pool)
fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
fu.Exp(t1, u, pool)
fu2.Exp(fu, u, pool)
fu3.Exp(fu2, u, pool)
y3 := newGFp12(pool).Frobenius(fu, pool)
fu2p := newGFp12(pool).Frobenius(fu2, pool)
fu3p := newGFp12(pool).Frobenius(fu3, pool)
y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
y0 := newGFp12(pool)
y0.Mul(fp, fp2, pool)
y0.Mul(y0, fp3, pool)
y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
y1.Conjugate(t1)
y5.Conjugate(fu2)
y3.Conjugate(y3)
y4.Mul(fu, fu2p, pool)
y4.Conjugate(y4)
y6 := newGFp12(pool)
y6.Mul(fu3, fu3p, pool)
y6.Conjugate(y6)
t0 := newGFp12(pool)
t0.Square(y6, pool)
t0.Mul(t0, y4, pool)
t0.Mul(t0, y5, pool)
t1.Mul(y3, y5, pool)
t1.Mul(t1, t0, pool)
t0.Mul(t0, y2, pool)
t1.Square(t1, pool)
t1.Mul(t1, t0, pool)
t1.Square(t1, pool)
t0.Mul(t1, y1, pool)
t1.Mul(t1, y0, pool)
t0.Square(t0, pool)
t0.Mul(t0, t1, pool)
inv.Put(pool)
t1.Put(pool)
t2.Put(pool)
fp.Put(pool)
fp2.Put(pool)
fp3.Put(pool)
fu.Put(pool)
fu2.Put(pool)
fu3.Put(pool)
fu2p.Put(pool)
fu3p.Put(pool)
y0.Put(pool)
y1.Put(pool)
y2.Put(pool)
y3.Put(pool)
y4.Put(pool)
y5.Put(pool)
y6.Put(pool)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
e := miller(a, b, pool)
ret := finalExponentiation(e, pool)
e.Put(pool)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}

258
vendor/golang.org/x/crypto/bn256/twist.go generated vendored Normal file
View file

@ -0,0 +1,258 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t *gfP2
}
var twistB = &gfP2{
bigFromBase10("6500054969564660373279643874235990574282535810762300357187714502686418407178"),
bigFromBase10("45500384786952622612957507119651934019977750675336102500314001518804928850249"),
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
&gfP2{
bigFromBase10("21167961636542580255011770066570541300993051739349375019639421053990175267184"),
bigFromBase10("64746500191241794695844075326670126197795977525365406531717464316923369116492"),
},
&gfP2{
bigFromBase10("20666913350058776956210519119118544732556678129809273996262322366050359951122"),
bigFromBase10("17778617556404439934652658462602675281523610326338642107814333856843981424549"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
}
func newTwistPoint(pool *bnPool) *twistPoint {
return &twistPoint{
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
}
}
func (c *twistPoint) String() string {
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
}
func (c *twistPoint) Put(pool *bnPool) {
c.x.Put(pool)
c.y.Put(pool)
c.z.Put(pool)
c.t.Put(pool)
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *twistPoint) IsOnCurve() bool {
pool := new(bnPool)
yy := newGFp2(pool).Square(c.y, pool)
xxx := newGFp2(pool).Square(c.x, pool)
xxx.Mul(xxx, c.x, pool)
yy.Sub(yy, xxx)
yy.Sub(yy, twistB)
yy.Minimal()
return yy.x.Sign() == 0 && yy.y.Sign() == 0
}
func (c *twistPoint) SetInfinity() {
c.z.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z1z1 := newGFp2(pool).Square(a.z, pool)
z2z2 := newGFp2(pool).Square(b.z, pool)
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
t := newGFp2(pool).Mul(b.z, z2z2, pool)
s1 := newGFp2(pool).Mul(a.y, t, pool)
t.Mul(a.z, z1z1, pool)
s2 := newGFp2(pool).Mul(b.y, t, pool)
h := newGFp2(pool).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := newGFp2(pool).Square(t, pool)
j := newGFp2(pool).Mul(h, i, pool)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := newGFp2(pool).Add(t, t)
v := newGFp2(pool).Mul(u1, i, pool)
t4 := newGFp2(pool).Square(r, pool)
t.Add(v, v)
t6 := newGFp2(pool).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, c.x) // t7
t4.Mul(s1, j, pool) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t, pool) // t10
c.y.Sub(t4, t6)
t.Add(a.z, b.z) // t11
t4.Square(t, pool) // t12
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h, pool)
z1z1.Put(pool)
z2z2.Put(pool)
u1.Put(pool)
u2.Put(pool)
t.Put(pool)
s1.Put(pool)
s2.Put(pool)
h.Put(pool)
i.Put(pool)
j.Put(pool)
r.Put(pool)
v.Put(pool)
t4.Put(pool)
t6.Put(pool)
}
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := newGFp2(pool).Square(a.x, pool)
B := newGFp2(pool).Square(a.y, pool)
C := newGFp2(pool).Square(B, pool)
t := newGFp2(pool).Add(a.x, B)
t2 := newGFp2(pool).Square(t, pool)
t.Sub(t2, A)
t2.Sub(t, C)
d := newGFp2(pool).Add(t2, t2)
t.Add(A, A)
e := newGFp2(pool).Add(t, A)
f := newGFp2(pool).Square(e, pool)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y, pool)
c.y.Sub(t2, t)
t.Mul(a.y, a.z, pool)
c.z.Add(t, t)
A.Put(pool)
B.Put(pool)
C.Put(pool)
t.Put(pool)
t2.Put(pool)
d.Put(pool)
e.Put(pool)
f.Put(pool)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
sum := newTwistPoint(pool)
sum.SetInfinity()
t := newTwistPoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
if c.z.IsOne() {
return c
}
if c.IsInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
return c
}
zInv := newGFp2(pool).Invert(c.z, pool)
t := newGFp2(pool).Mul(c.y, zInv, pool)
zInv2 := newGFp2(pool).Square(zInv, pool)
c.y.Mul(t, zInv2, pool)
t.Mul(c.x, zInv2, pool)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
zInv.Put(pool)
t.Put(pool)
zInv2.Put(pool)
return c
}
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
c.x.Set(a.x)
c.y.SetZero()
c.y.Sub(c.y, a.y)
c.z.Set(a.z)
c.t.SetZero()
}