Checking in vendor folder for ease of using go get.

This commit is contained in:
Renan DelValle 2018-10-23 23:32:59 -07:00
parent 7a1251853b
commit cdb4b5a1d0
No known key found for this signature in database
GPG key ID: C240AD6D6F443EC9
3554 changed files with 1270116 additions and 0 deletions

36
vendor/golang.org/x/text/message/catalog.go generated vendored Normal file
View file

@ -0,0 +1,36 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
// TODO: some types in this file will need to be made public at some time.
// Documentation and method names will reflect this by using the exported name.
import (
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// MatchLanguage reports the matched tag obtained from language.MatchStrings for
// the Matcher of the DefaultCatalog.
func MatchLanguage(preferred ...string) language.Tag {
c := DefaultCatalog
tag, _ := language.MatchStrings(c.Matcher(), preferred...)
return tag
}
// DefaultCatalog is used by SetString.
var DefaultCatalog catalog.Catalog = defaultCatalog
var defaultCatalog = catalog.NewBuilder()
// SetString calls SetString on the initial default Catalog.
func SetString(tag language.Tag, key string, msg string) error {
return defaultCatalog.SetString(tag, key, msg)
}
// Set calls Set on the initial default Catalog.
func Set(tag language.Tag, key string, msg ...catalog.Message) error {
return defaultCatalog.Set(tag, key, msg...)
}

369
vendor/golang.org/x/text/message/catalog/catalog.go generated vendored Normal file
View file

@ -0,0 +1,369 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package catalog defines collections of translated format strings.
//
// This package mostly defines types for populating catalogs with messages. The
// catmsg package contains further definitions for creating custom message and
// dictionary types as well as packages that use Catalogs.
//
// Package catalog defines various interfaces: Dictionary, Loader, and Message.
// A Dictionary maintains a set of translations of format strings for a single
// language. The Loader interface defines a source of dictionaries. A
// translation of a format string is represented by a Message.
//
//
// Catalogs
//
// A Catalog defines a programmatic interface for setting message translations.
// It maintains a set of per-language dictionaries with translations for a set
// of keys. For message translation to function properly, a translation should
// be defined for each key for each supported language. A dictionary may be
// underspecified, though, if there is a parent language that already defines
// the key. For example, a Dictionary for "en-GB" could leave out entries that
// are identical to those in a dictionary for "en".
//
//
// Messages
//
// A Message is a format string which varies on the value of substitution
// variables. For instance, to indicate the number of results one could want "no
// results" if there are none, "1 result" if there is 1, and "%d results" for
// any other number. Catalog is agnostic to the kind of format strings that are
// used: for instance, messages can follow either the printf-style substitution
// from package fmt or use templates.
//
// A Message does not substitute arguments in the format string. This job is
// reserved for packages that render strings, such as message, that use Catalogs
// to selected string. This separation of concerns allows Catalog to be used to
// store any kind of formatting strings.
//
//
// Selecting messages based on linguistic features of substitution arguments
//
// Messages may vary based on any linguistic features of the argument values.
// The most common one is plural form, but others exist.
//
// Selection messages are provided in packages that provide support for a
// specific linguistic feature. The following snippet uses plural.Select:
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// plural.Select(1,
// "one", "You are 1 minute late.",
// "other", "You are %d minutes late."))
//
// In this example, a message is stored in the Catalog where one of two messages
// is selected based on the first argument, a number. The first message is
// selected if the argument is singular (identified by the selector "one") and
// the second message is selected in all other cases. The selectors are defined
// by the plural rules defined in CLDR. The selector "other" is special and will
// always match. Each language always defines one of the linguistic categories
// to be "other." For English, singular is "one" and plural is "other".
//
// Selects can be nested. This allows selecting sentences based on features of
// multiple arguments or multiple linguistic properties of a single argument.
//
//
// String interpolation
//
// There is often a lot of commonality between the possible variants of a
// message. For instance, in the example above the word "minute" varies based on
// the plural catogory of the argument, but the rest of the sentence is
// identical. Using interpolation the above message can be rewritten as:
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// catalog.Var("minutes",
// plural.Select(1, "one", "minute", "other", "minutes")),
// catalog.String("You are %[1]d ${minutes} late."))
//
// Var is defined to return the variable name if the message does not yield a
// match. This allows us to further simplify this snippet to
//
// catalog.Set(language.English, "You are %d minute(s) late.",
// catalog.Var("minutes", plural.Select(1, "one", "minute")),
// catalog.String("You are %d ${minutes} late."))
//
// Overall this is still only a minor improvement, but things can get a lot more
// unwieldy if more than one linguistic feature is used to determine a message
// variant. Consider the following example:
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.Set(language.English, "%[1]v invite(s) %[2]v to their party.",
// catalog.Var("their",
// plural.Select(1,
// "one", gender.Select(1, "female", "her", "other", "his"))),
// catalog.Var("invites", plural.Select(1, "one", "invite"))
// catalog.String("%[1]v ${invites} %[2]v to ${their} party.")),
//
// Without variable substitution, this would have to be written as
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.Set(language.English, "%[1]v invite(s) %[2]v to their party.",
// plural.Select(1,
// "one", gender.Select(1,
// "female", "%[1]v invites %[2]v to her party."
// "other", "%[1]v invites %[2]v to his party."),
// "other", "%[1]v invites %[2]v to their party.")
//
// Not necessarily shorter, but using variables there is less duplication and
// the messages are more maintenance friendly. Moreover, languages may have up
// to six plural forms. This makes the use of variables more welcome.
//
// Different messages using the same inflections can reuse variables by moving
// them to macros. Using macros we can rewrite the message as:
//
// // argument 1: list of hosts, argument 2: list of guests
// catalog.SetString(language.English, "%[1]v invite(s) %[2]v to their party.",
// "%[1]v ${invites(1)} %[2]v to ${their(1)} party.")
//
// Where the following macros were defined separately.
//
// catalog.SetMacro(language.English, "invites", plural.Select(1, "one", "invite"))
// catalog.SetMacro(language.English, "their", plural.Select(1,
// "one", gender.Select(1, "female", "her", "other", "his"))),
//
// Placeholders use parentheses and the arguments to invoke a macro.
//
//
// Looking up messages
//
// Message lookup using Catalogs is typically only done by specialized packages
// and is not something the user should be concerned with. For instance, to
// express the tardiness of a user using the related message we defined earlier,
// the user may use the package message like so:
//
// p := message.NewPrinter(language.English)
// p.Printf("You are %d minute(s) late.", 5)
//
// Which would print:
// You are 5 minutes late.
//
//
// This package is UNDER CONSTRUCTION and its API may change.
package catalog // import "golang.org/x/text/message/catalog"
// TODO:
// Some way to freeze a catalog.
// - Locking on each lockup turns out to be about 50% of the total running time
// for some of the benchmarks in the message package.
// Consider these:
// - Sequence type to support sequences in user-defined messages.
// - Garbage collection: Remove dictionaries that can no longer be reached
// as other dictionaries have been added that cover all possible keys.
import (
"errors"
"fmt"
"golang.org/x/text/internal"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/language"
)
// A Catalog allows lookup of translated messages.
type Catalog interface {
// Languages returns all languages for which the Catalog contains variants.
Languages() []language.Tag
// Matcher returns a Matcher for languages from this Catalog.
Matcher() language.Matcher
// A Context is used for evaluating Messages.
Context(tag language.Tag, r catmsg.Renderer) *Context
// This method also makes Catalog a private interface.
lookup(tag language.Tag, key string) (data string, ok bool)
}
// NewFromMap creates a Catalog from the given map. If a Dictionary is
// underspecified the entry is retrieved from a parent language.
func NewFromMap(dictionaries map[string]Dictionary, opts ...Option) (Catalog, error) {
options := options{}
for _, o := range opts {
o(&options)
}
c := &catalog{
dicts: map[language.Tag]Dictionary{},
}
_, hasFallback := dictionaries[options.fallback.String()]
if hasFallback {
// TODO: Should it be okay to not have a fallback language?
// Catalog generators could enforce there is always a fallback.
c.langs = append(c.langs, options.fallback)
}
for lang, dict := range dictionaries {
tag, err := language.Parse(lang)
if err != nil {
return nil, fmt.Errorf("catalog: invalid language tag %q", lang)
}
if _, ok := c.dicts[tag]; ok {
return nil, fmt.Errorf("catalog: duplicate entry for tag %q after normalization", tag)
}
c.dicts[tag] = dict
if !hasFallback || tag != options.fallback {
c.langs = append(c.langs, tag)
}
}
if hasFallback {
internal.SortTags(c.langs[1:])
} else {
internal.SortTags(c.langs)
}
c.matcher = language.NewMatcher(c.langs)
return c, nil
}
// A Dictionary is a source of translations for a single language.
type Dictionary interface {
// Lookup returns a message compiled with catmsg.Compile for the given key.
// It returns false for ok if such a message could not be found.
Lookup(key string) (data string, ok bool)
}
type catalog struct {
langs []language.Tag
dicts map[language.Tag]Dictionary
macros store
matcher language.Matcher
}
func (c *catalog) Languages() []language.Tag { return c.langs }
func (c *catalog) Matcher() language.Matcher { return c.matcher }
func (c *catalog) lookup(tag language.Tag, key string) (data string, ok bool) {
for ; ; tag = tag.Parent() {
if dict, ok := c.dicts[tag]; ok {
if data, ok := dict.Lookup(key); ok {
return data, true
}
}
if tag == language.Und {
break
}
}
return "", false
}
// Context returns a Context for formatting messages.
// Only one Message may be formatted per context at any given time.
func (c *catalog) Context(tag language.Tag, r catmsg.Renderer) *Context {
return &Context{
cat: c,
tag: tag,
dec: catmsg.NewDecoder(tag, r, &dict{&c.macros, tag}),
}
}
// A Builder allows building a Catalog programmatically.
type Builder struct {
options
matcher language.Matcher
index store
macros store
}
type options struct {
fallback language.Tag
}
// An Option configures Catalog behavior.
type Option func(*options)
// Fallback specifies the default fallback language. The default is Und.
func Fallback(tag language.Tag) Option {
return func(o *options) { o.fallback = tag }
}
// TODO:
// // Catalogs specifies one or more sources for a Catalog.
// // Lookups are in order.
// // This can be changed inserting a Catalog used for setting, which implements
// // Loader, used for setting in the chain.
// func Catalogs(d ...Loader) Option {
// return nil
// }
//
// func Delims(start, end string) Option {}
//
// func Dict(tag language.Tag, d ...Dictionary) Option
// NewBuilder returns an empty mutable Catalog.
func NewBuilder(opts ...Option) *Builder {
c := &Builder{}
for _, o := range opts {
o(&c.options)
}
return c
}
// SetString is shorthand for Set(tag, key, String(msg)).
func (c *Builder) SetString(tag language.Tag, key string, msg string) error {
return c.set(tag, key, &c.index, String(msg))
}
// Set sets the translation for the given language and key.
//
// When evaluation this message, the first Message in the sequence to msgs to
// evaluate to a string will be the message returned.
func (c *Builder) Set(tag language.Tag, key string, msg ...Message) error {
return c.set(tag, key, &c.index, msg...)
}
// SetMacro defines a Message that may be substituted in another message.
// The arguments to a macro Message are passed as arguments in the
// placeholder the form "${foo(arg1, arg2)}".
func (c *Builder) SetMacro(tag language.Tag, name string, msg ...Message) error {
return c.set(tag, name, &c.macros, msg...)
}
// ErrNotFound indicates there was no message for the given key.
var ErrNotFound = errors.New("catalog: message not found")
// String specifies a plain message string. It can be used as fallback if no
// other strings match or as a simple standalone message.
//
// It is an error to pass more than one String in a message sequence.
func String(name string) Message {
return catmsg.String(name)
}
// Var sets a variable that may be substituted in formatting patterns using
// named substitution of the form "${name}". The name argument is used as a
// fallback if the statements do not produce a match. The statement sequence may
// not contain any Var calls.
//
// The name passed to a Var must be unique within message sequence.
func Var(name string, msg ...Message) Message {
return &catmsg.Var{Name: name, Message: firstInSequence(msg)}
}
// Context returns a Context for formatting messages.
// Only one Message may be formatted per context at any given time.
func (b *Builder) Context(tag language.Tag, r catmsg.Renderer) *Context {
return &Context{
cat: b,
tag: tag,
dec: catmsg.NewDecoder(tag, r, &dict{&b.macros, tag}),
}
}
// A Context is used for evaluating Messages.
// Only one Message may be formatted per context at any given time.
type Context struct {
cat Catalog
tag language.Tag // TODO: use compact index.
dec *catmsg.Decoder
}
// Execute looks up and executes the message with the given key.
// It returns ErrNotFound if no message could be found in the index.
func (c *Context) Execute(key string) error {
data, ok := c.cat.lookup(c.tag, key)
if !ok {
return ErrNotFound
}
return c.dec.Execute(data)
}

View file

@ -0,0 +1,296 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package catalog
import (
"bytes"
"path"
"reflect"
"strings"
"testing"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/language"
)
type entry struct {
tag, key string
msg interface{}
}
func langs(s string) []language.Tag {
t, _, _ := language.ParseAcceptLanguage(s)
return t
}
type testCase struct {
desc string
cat []entry
lookup []entry
fallback string
match []string
tags []language.Tag
}
var testCases = []testCase{{
desc: "empty catalog",
lookup: []entry{
{"en", "key", ""},
{"en", "", ""},
{"nl", "", ""},
},
match: []string{
"gr -> und",
"en-US -> und",
"af -> und",
},
tags: nil, // not an empty list.
}, {
desc: "one entry",
cat: []entry{
{"en", "hello", "Hello!"},
},
lookup: []entry{
{"und", "hello", ""},
{"nl", "hello", ""},
{"en", "hello", "Hello!"},
{"en-US", "hello", "Hello!"},
{"en-GB", "hello", "Hello!"},
{"en-oxendict", "hello", "Hello!"},
{"en-oxendict-u-ms-metric", "hello", "Hello!"},
},
match: []string{
"gr -> en",
"en-US -> en",
},
tags: langs("en"),
}, {
desc: "hierarchical languages",
cat: []entry{
{"en", "hello", "Hello!"},
{"en-GB", "hello", "Hellø!"},
{"en-US", "hello", "Howdy!"},
{"en", "greetings", "Greetings!"},
{"gsw", "hello", "Grüetzi!"},
},
lookup: []entry{
{"und", "hello", ""},
{"nl", "hello", ""},
{"en", "hello", "Hello!"},
{"en-US", "hello", "Howdy!"},
{"en-GB", "hello", "Hellø!"},
{"en-oxendict", "hello", "Hello!"},
{"en-US-oxendict-u-ms-metric", "hello", "Howdy!"},
{"und", "greetings", ""},
{"nl", "greetings", ""},
{"en", "greetings", "Greetings!"},
{"en-US", "greetings", "Greetings!"},
{"en-GB", "greetings", "Greetings!"},
{"en-oxendict", "greetings", "Greetings!"},
{"en-US-oxendict-u-ms-metric", "greetings", "Greetings!"},
},
fallback: "gsw",
match: []string{
"gr -> gsw",
"en-US -> en-US",
},
tags: langs("gsw, en, en-GB, en-US"),
}, {
desc: "variables",
cat: []entry{
{"en", "hello %s", []Message{
Var("person", String("Jane")),
String("Hello ${person}!"),
}},
{"en", "hello error", []Message{
Var("person", String("Jane")),
noMatchMessage{}, // trigger sequence path.
String("Hello ${person."),
}},
{"en", "fallback to var value", []Message{
Var("you", noMatchMessage{}, noMatchMessage{}),
String("Hello ${you}."),
}},
{"en", "scopes", []Message{
Var("person1", String("Mark")),
Var("person2", String("Jane")),
Var("couple",
Var("person1", String("Joe")),
String("${person1} and ${person2}")),
String("Hello ${couple}."),
}},
{"en", "missing var", String("Hello ${missing}.")},
},
lookup: []entry{
{"en", "hello %s", "Hello Jane!"},
{"en", "hello error", "Hello $!(MISSINGBRACE)"},
{"en", "fallback to var value", "Hello you."},
{"en", "scopes", "Hello Joe and Jane."},
{"en", "missing var", "Hello missing."},
},
tags: langs("en"),
}, {
desc: "macros",
cat: []entry{
{"en", "macro1", String("Hello ${macro1(1)}.")},
{"en", "macro2", String("Hello ${ macro1(2) }!")},
{"en", "macroWS", String("Hello ${ macro1( 2 ) }!")},
{"en", "missing", String("Hello ${ missing(1 }.")},
{"en", "badnum", String("Hello ${ badnum(1b) }.")},
{"en", "undefined", String("Hello ${ undefined(1) }.")},
{"en", "macroU", String("Hello ${ macroU(2) }!")},
},
lookup: []entry{
{"en", "macro1", "Hello Joe."},
{"en", "macro2", "Hello Joe!"},
{"en-US", "macroWS", "Hello Joe!"},
{"en-NL", "missing", "Hello $!(MISSINGPAREN)."},
{"en", "badnum", "Hello $!(BADNUM)."},
{"en", "undefined", "Hello undefined."},
{"en", "macroU", "Hello macroU!"},
},
tags: langs("en"),
}}
func setMacros(b *Builder) {
b.SetMacro(language.English, "macro1", String("Joe"))
b.SetMacro(language.Und, "macro2", String("${macro1(1)}"))
b.SetMacro(language.English, "macroU", noMatchMessage{})
}
type buildFunc func(t *testing.T, tc testCase) Catalog
func initBuilder(t *testing.T, tc testCase) Catalog {
options := []Option{}
if tc.fallback != "" {
options = append(options, Fallback(language.MustParse(tc.fallback)))
}
cat := NewBuilder(options...)
for _, e := range tc.cat {
tag := language.MustParse(e.tag)
switch msg := e.msg.(type) {
case string:
cat.SetString(tag, e.key, msg)
case Message:
cat.Set(tag, e.key, msg)
case []Message:
cat.Set(tag, e.key, msg...)
}
}
setMacros(cat)
return cat
}
type dictionary map[string]string
func (d dictionary) Lookup(key string) (data string, ok bool) {
data, ok = d[key]
return data, ok
}
func initCatalog(t *testing.T, tc testCase) Catalog {
m := map[string]Dictionary{}
for _, e := range tc.cat {
m[e.tag] = dictionary{}
}
for _, e := range tc.cat {
var msg Message
switch x := e.msg.(type) {
case string:
msg = String(x)
case Message:
msg = x
case []Message:
msg = firstInSequence(x)
}
data, _ := catmsg.Compile(language.MustParse(e.tag), nil, msg)
m[e.tag].(dictionary)[e.key] = data
}
options := []Option{}
if tc.fallback != "" {
options = append(options, Fallback(language.MustParse(tc.fallback)))
}
c, err := NewFromMap(m, options...)
if err != nil {
t.Fatal(err)
}
// TODO: implement macros for fixed catalogs.
b := NewBuilder()
setMacros(b)
c.(*catalog).macros.index = b.macros.index
return c
}
func TestMatcher(t *testing.T) {
test := func(t *testing.T, init buildFunc) {
for _, tc := range testCases {
for _, s := range tc.match {
a := strings.Split(s, "->")
t.Run(path.Join(tc.desc, a[0]), func(t *testing.T) {
cat := init(t, tc)
got, _ := language.MatchStrings(cat.Matcher(), a[0])
want := language.MustParse(strings.TrimSpace(a[1]))
if got != want {
t.Errorf("got %q; want %q", got, want)
}
})
}
}
}
t.Run("Builder", func(t *testing.T) { test(t, initBuilder) })
t.Run("Catalog", func(t *testing.T) { test(t, initCatalog) })
}
func TestCatalog(t *testing.T) {
test := func(t *testing.T, init buildFunc) {
for _, tc := range testCases {
cat := init(t, tc)
wantTags := tc.tags
if got := cat.Languages(); !reflect.DeepEqual(got, wantTags) {
t.Errorf("%s:Languages: got %v; want %v", tc.desc, got, wantTags)
}
for _, e := range tc.lookup {
t.Run(path.Join(tc.desc, e.tag, e.key), func(t *testing.T) {
tag := language.MustParse(e.tag)
buf := testRenderer{}
ctx := cat.Context(tag, &buf)
want := e.msg.(string)
err := ctx.Execute(e.key)
gotFound := err != ErrNotFound
wantFound := want != ""
if gotFound != wantFound {
t.Fatalf("err: got %v (%v); want %v", gotFound, err, wantFound)
}
if got := buf.buf.String(); got != want {
t.Errorf("Lookup:\ngot %q\nwant %q", got, want)
}
})
}
}
}
t.Run("Builder", func(t *testing.T) { test(t, initBuilder) })
t.Run("Catalog", func(t *testing.T) { test(t, initCatalog) })
}
type testRenderer struct {
buf bytes.Buffer
}
func (f *testRenderer) Arg(i int) interface{} { return nil }
func (f *testRenderer) Render(s string) { f.buf.WriteString(s) }
var msgNoMatch = catmsg.Register("no match", func(d *catmsg.Decoder) bool {
return false // no match
})
type noMatchMessage struct{}
func (noMatchMessage) Compile(e *catmsg.Encoder) error {
e.EncodeMessageType(msgNoMatch)
return catmsg.ErrIncomplete
}

129
vendor/golang.org/x/text/message/catalog/dict.go generated vendored Normal file
View file

@ -0,0 +1,129 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package catalog
import (
"sync"
"golang.org/x/text/internal"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/language"
)
// TODO:
// Dictionary returns a Dictionary that returns the first Message, using the
// given language tag, that matches:
// 1. the last one registered by one of the Set methods
// 2. returned by one of the Loaders
// 3. repeat from 1. using the parent language
// This approach allows messages to be underspecified.
// func (c *Catalog) Dictionary(tag language.Tag) (Dictionary, error) {
// // TODO: verify dictionary exists.
// return &dict{&c.index, tag}, nil
// }
type dict struct {
s *store
tag language.Tag // TODO: make compact tag.
}
func (d *dict) Lookup(key string) (data string, ok bool) {
return d.s.lookup(d.tag, key)
}
func (b *Builder) lookup(tag language.Tag, key string) (data string, ok bool) {
return b.index.lookup(tag, key)
}
func (c *Builder) set(tag language.Tag, key string, s *store, msg ...Message) error {
data, err := catmsg.Compile(tag, &dict{&c.macros, tag}, firstInSequence(msg))
s.mutex.Lock()
defer s.mutex.Unlock()
m := s.index[tag]
if m == nil {
m = msgMap{}
if s.index == nil {
s.index = map[language.Tag]msgMap{}
}
c.matcher = nil
s.index[tag] = m
}
m[key] = data
return err
}
func (c *Builder) Matcher() language.Matcher {
c.index.mutex.RLock()
m := c.matcher
c.index.mutex.RUnlock()
if m != nil {
return m
}
c.index.mutex.Lock()
if c.matcher == nil {
c.matcher = language.NewMatcher(c.unlockedLanguages())
}
m = c.matcher
c.index.mutex.Unlock()
return m
}
type store struct {
mutex sync.RWMutex
index map[language.Tag]msgMap
}
type msgMap map[string]string
func (s *store) lookup(tag language.Tag, key string) (data string, ok bool) {
s.mutex.RLock()
defer s.mutex.RUnlock()
for ; ; tag = tag.Parent() {
if msgs, ok := s.index[tag]; ok {
if msg, ok := msgs[key]; ok {
return msg, true
}
}
if tag == language.Und {
break
}
}
return "", false
}
// Languages returns all languages for which the Catalog contains variants.
func (b *Builder) Languages() []language.Tag {
s := &b.index
s.mutex.RLock()
defer s.mutex.RUnlock()
return b.unlockedLanguages()
}
func (b *Builder) unlockedLanguages() []language.Tag {
s := &b.index
if len(s.index) == 0 {
return nil
}
tags := make([]language.Tag, 0, len(s.index))
_, hasFallback := s.index[b.options.fallback]
offset := 0
if hasFallback {
tags = append(tags, b.options.fallback)
offset = 1
}
for t := range s.index {
if t != b.options.fallback {
tags = append(tags, t)
}
}
internal.SortTags(tags[offset:])
return tags
}

15
vendor/golang.org/x/text/message/catalog/go19.go generated vendored Normal file
View file

@ -0,0 +1,15 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
package catalog
import "golang.org/x/text/internal/catmsg"
// A Message holds a collection of translations for the same phrase that may
// vary based on the values of substitution arguments.
type Message = catmsg.Message
type firstInSequence = catmsg.FirstOf

23
vendor/golang.org/x/text/message/catalog/gopre19.go generated vendored Normal file
View file

@ -0,0 +1,23 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.9
package catalog
import "golang.org/x/text/internal/catmsg"
// A Message holds a collection of translations for the same phrase that may
// vary based on the values of substitution arguments.
type Message interface {
catmsg.Message
}
func firstInSequence(m []Message) catmsg.Message {
a := []catmsg.Message{}
for _, m := range m {
a = append(a, m)
}
return catmsg.FirstOf(a)
}

43
vendor/golang.org/x/text/message/catalog_test.go generated vendored Normal file
View file

@ -0,0 +1,43 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"strings"
"testing"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
func TestMatchLanguage(t *testing.T) {
c := catalog.NewBuilder(catalog.Fallback(language.English))
c.SetString(language.Bengali, "", "")
c.SetString(language.English, "", "")
c.SetString(language.German, "", "")
testCases := []struct {
args string // '|'-separated list
want string
}{{
args: "de-CH",
want: "de",
}, {
args: "bn-u-nu-latn|en-US,en;q=0.9,de;q=0.8,nl;q=0.7",
want: "bn-u-nu-latn",
}, {
args: "gr",
want: "en",
}}
for _, tc := range testCases {
DefaultCatalog = c
t.Run(tc.args, func(t *testing.T) {
got := MatchLanguage(strings.Split(tc.args, "|")...)
if got != language.Make(tc.want) {
t.Errorf("got %q; want %q", got, tc.want)
}
})
}
}

100
vendor/golang.org/x/text/message/doc.go generated vendored Normal file
View file

@ -0,0 +1,100 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package message implements formatted I/O for localized strings with functions
// analogous to the fmt's print functions. It is a drop-in replacement for fmt.
//
//
// Localized Formatting
//
// A format string can be localized by replacing any of the print functions of
// fmt with an equivalent call to a Printer.
//
// p := message.NewPrinter(message.MatchLanguage("en"))
// p.Println(123456.78) // Prints 123,456.78
//
// p.Printf("%d ducks in a row", 4331) // Prints 4,331 ducks in a row
//
// p := message.NewPrinter(message.MatchLanguage("nl"))
// p.Println("Hoogte: %f meter", 1244.9) // Prints Hoogte: 1.244,9 meter
//
// p := message.NewPrinter(message.MatchLanguage("bn"))
// p.Println(123456.78) // Prints ১,২৩,৪৫৬.৭৮
//
// Printer currently supports numbers and specialized types for which packages
// exist in x/text. Other builtin types such as time.Time and slices are
// planned.
//
// Format strings largely have the same meaning as with fmt with the following
// notable exceptions:
// - flag # always resorts to fmt for printing
// - verb 'f', 'e', 'g', 'd' use localized formatting unless the '#' flag is
// specified.
//
// See package fmt for more options.
//
//
// Translation
//
// The format strings that are passed to Printf, Sprintf, Fprintf, or Errorf
// are used as keys to look up translations for the specified languages.
// More on how these need to be specified below.
//
// One can use arbitrary keys to distinguish between otherwise ambiguous
// strings:
// p := message.NewPrinter(language.English)
// p.Printf("archive(noun)") // Prints "archive"
// p.Printf("archive(verb)") // Prints "archive"
//
// p := message.NewPrinter(language.German)
// p.Printf("archive(noun)") // Prints "Archiv"
// p.Printf("archive(verb)") // Prints "archivieren"
//
// To retain the fallback functionality, use Key:
// p.Printf(message.Key("archive(noun)", "archive"))
// p.Printf(message.Key("archive(verb)", "archive"))
//
//
// Translation Pipeline
//
// Format strings that contain text need to be translated to support different
// locales. The first step is to extract strings that need to be translated.
//
// 1. Install gotext
// go get -u golang.org/x/text/cmd/gotext
// gotext -help
//
// 2. Mark strings in your source to be translated by using message.Printer,
// instead of the functions of the fmt package.
//
// 3. Extract the strings from your source
//
// gotext extract
//
// The output will be written to the textdata directory.
//
// 4. Send the files for translation
//
// It is planned to support multiple formats, but for now one will have to
// rewrite the JSON output to the desired format.
//
// 5. Inject translations into program
//
// 6. Repeat from 2
//
// Right now this has to be done programmatically with calls to Set or
// SetString. These functions as well as the methods defined in
// see also package golang.org/x/text/message/catalog can be used to implement
// either dynamic or static loading of messages.
//
//
// Plural and Gender Forms
//
// Translated messages can vary based on the plural and gender forms of
// substitution values. In general, it is up to the translators to provide
// alternative translations for such forms. See the packages in
// golang.org/x/text/feature and golang.org/x/text/message/catalog for more
// information.
//
package message

42
vendor/golang.org/x/text/message/examples_test.go generated vendored Normal file
View file

@ -0,0 +1,42 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message_test
import (
"net/http"
"golang.org/x/text/language"
"golang.org/x/text/message"
)
func Example_http() {
// languages supported by this service:
matcher := language.NewMatcher(message.DefaultCatalog.Languages())
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
lang, _ := r.Cookie("lang")
accept := r.Header.Get("Accept-Language")
fallback := "en"
tag, _ := language.MatchStrings(matcher, lang.String(), accept, fallback)
p := message.NewPrinter(tag)
p.Fprintln(w, "User language is", tag)
})
}
func ExamplePrinter_numbers() {
for _, lang := range []string{"en", "de", "de-CH", "fr", "bn"} {
p := message.NewPrinter(language.Make(lang))
p.Printf("%-6s %g\n", lang, 123456.78)
}
// Output:
// en 123,456.78
// de 123.456,78
// de-CH 123456.78
// fr 123 456,78
// bn ১,২৩,৪৫৬.৭৮
}

1871
vendor/golang.org/x/text/message/fmt_test.go generated vendored Normal file

File diff suppressed because it is too large Load diff

510
vendor/golang.org/x/text/message/format.go generated vendored Normal file
View file

@ -0,0 +1,510 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"bytes"
"strconv"
"unicode/utf8"
"golang.org/x/text/internal/format"
)
const (
ldigits = "0123456789abcdefx"
udigits = "0123456789ABCDEFX"
)
const (
signed = true
unsigned = false
)
// A formatInfo is the raw formatter used by Printf etc.
// It prints into a buffer that must be set up separately.
type formatInfo struct {
buf *bytes.Buffer
format.Parser
// intbuf is large enough to store %b of an int64 with a sign and
// avoids padding at the end of the struct on 32 bit architectures.
intbuf [68]byte
}
func (f *formatInfo) init(buf *bytes.Buffer) {
f.ClearFlags()
f.buf = buf
}
// writePadding generates n bytes of padding.
func (f *formatInfo) writePadding(n int) {
if n <= 0 { // No padding bytes needed.
return
}
f.buf.Grow(n)
// Decide which byte the padding should be filled with.
padByte := byte(' ')
if f.Zero {
padByte = byte('0')
}
// Fill padding with padByte.
for i := 0; i < n; i++ {
f.buf.WriteByte(padByte) // TODO: make more efficient.
}
}
// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatInfo) pad(b []byte) {
if !f.WidthPresent || f.Width == 0 {
f.buf.Write(b)
return
}
width := f.Width - utf8.RuneCount(b)
if !f.Minus {
// left padding
f.writePadding(width)
f.buf.Write(b)
} else {
// right padding
f.buf.Write(b)
f.writePadding(width)
}
}
// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatInfo) padString(s string) {
if !f.WidthPresent || f.Width == 0 {
f.buf.WriteString(s)
return
}
width := f.Width - utf8.RuneCountInString(s)
if !f.Minus {
// left padding
f.writePadding(width)
f.buf.WriteString(s)
} else {
// right padding
f.buf.WriteString(s)
f.writePadding(width)
}
}
// fmt_boolean formats a boolean.
func (f *formatInfo) fmt_boolean(v bool) {
if v {
f.padString("true")
} else {
f.padString("false")
}
}
// fmt_unicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
func (f *formatInfo) fmt_unicode(u uint64) {
buf := f.intbuf[0:]
// With default precision set the maximum needed buf length is 18
// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
// into the already allocated intbuf with a capacity of 68 bytes.
prec := 4
if f.PrecPresent && f.Prec > 4 {
prec = f.Prec
// Compute space needed for "U+" , number, " '", character, "'".
width := 2 + prec + 2 + utf8.UTFMax + 1
if width > len(buf) {
buf = make([]byte, width)
}
}
// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
i := len(buf)
// For %#U we want to add a space and a quoted character at the end of the buffer.
if f.Sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
i--
buf[i] = '\''
i -= utf8.RuneLen(rune(u))
utf8.EncodeRune(buf[i:], rune(u))
i--
buf[i] = '\''
i--
buf[i] = ' '
}
// Format the Unicode code point u as a hexadecimal number.
for u >= 16 {
i--
buf[i] = udigits[u&0xF]
prec--
u >>= 4
}
i--
buf[i] = udigits[u]
prec--
// Add zeros in front of the number until requested precision is reached.
for prec > 0 {
i--
buf[i] = '0'
prec--
}
// Add a leading "U+".
i--
buf[i] = '+'
i--
buf[i] = 'U'
oldZero := f.Zero
f.Zero = false
f.pad(buf[i:])
f.Zero = oldZero
}
// fmt_integer formats signed and unsigned integers.
func (f *formatInfo) fmt_integer(u uint64, base int, isSigned bool, digits string) {
negative := isSigned && int64(u) < 0
if negative {
u = -u
}
buf := f.intbuf[0:]
// The already allocated f.intbuf with a capacity of 68 bytes
// is large enough for integer formatting when no precision or width is set.
if f.WidthPresent || f.PrecPresent {
// Account 3 extra bytes for possible addition of a sign and "0x".
width := 3 + f.Width + f.Prec // wid and prec are always positive.
if width > len(buf) {
// We're going to need a bigger boat.
buf = make([]byte, width)
}
}
// Two ways to ask for extra leading zero digits: %.3d or %03d.
// If both are specified the f.zero flag is ignored and
// padding with spaces is used instead.
prec := 0
if f.PrecPresent {
prec = f.Prec
// Precision of 0 and value of 0 means "print nothing" but padding.
if prec == 0 && u == 0 {
oldZero := f.Zero
f.Zero = false
f.writePadding(f.Width)
f.Zero = oldZero
return
}
} else if f.Zero && f.WidthPresent {
prec = f.Width
if negative || f.Plus || f.Space {
prec-- // leave room for sign
}
}
// Because printing is easier right-to-left: format u into buf, ending at buf[i].
// We could make things marginally faster by splitting the 32-bit case out
// into a separate block but it's not worth the duplication, so u has 64 bits.
i := len(buf)
// Use constants for the division and modulo for more efficient code.
// Switch cases ordered by popularity.
switch base {
case 10:
for u >= 10 {
i--
next := u / 10
buf[i] = byte('0' + u - next*10)
u = next
}
case 16:
for u >= 16 {
i--
buf[i] = digits[u&0xF]
u >>= 4
}
case 8:
for u >= 8 {
i--
buf[i] = byte('0' + u&7)
u >>= 3
}
case 2:
for u >= 2 {
i--
buf[i] = byte('0' + u&1)
u >>= 1
}
default:
panic("fmt: unknown base; can't happen")
}
i--
buf[i] = digits[u]
for i > 0 && prec > len(buf)-i {
i--
buf[i] = '0'
}
// Various prefixes: 0x, -, etc.
if f.Sharp {
switch base {
case 8:
if buf[i] != '0' {
i--
buf[i] = '0'
}
case 16:
// Add a leading 0x or 0X.
i--
buf[i] = digits[16]
i--
buf[i] = '0'
}
}
if negative {
i--
buf[i] = '-'
} else if f.Plus {
i--
buf[i] = '+'
} else if f.Space {
i--
buf[i] = ' '
}
// Left padding with zeros has already been handled like precision earlier
// or the f.zero flag is ignored due to an explicitly set precision.
oldZero := f.Zero
f.Zero = false
f.pad(buf[i:])
f.Zero = oldZero
}
// truncate truncates the string to the specified precision, if present.
func (f *formatInfo) truncate(s string) string {
if f.PrecPresent {
n := f.Prec
for i := range s {
n--
if n < 0 {
return s[:i]
}
}
}
return s
}
// fmt_s formats a string.
func (f *formatInfo) fmt_s(s string) {
s = f.truncate(s)
f.padString(s)
}
// fmt_sbx formats a string or byte slice as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_sbx(s string, b []byte, digits string) {
length := len(b)
if b == nil {
// No byte slice present. Assume string s should be encoded.
length = len(s)
}
// Set length to not process more bytes than the precision demands.
if f.PrecPresent && f.Prec < length {
length = f.Prec
}
// Compute width of the encoding taking into account the f.sharp and f.space flag.
width := 2 * length
if width > 0 {
if f.Space {
// Each element encoded by two hexadecimals will get a leading 0x or 0X.
if f.Sharp {
width *= 2
}
// Elements will be separated by a space.
width += length - 1
} else if f.Sharp {
// Only a leading 0x or 0X will be added for the whole string.
width += 2
}
} else { // The byte slice or string that should be encoded is empty.
if f.WidthPresent {
f.writePadding(f.Width)
}
return
}
// Handle padding to the left.
if f.WidthPresent && f.Width > width && !f.Minus {
f.writePadding(f.Width - width)
}
// Write the encoding directly into the output buffer.
buf := f.buf
if f.Sharp {
// Add leading 0x or 0X.
buf.WriteByte('0')
buf.WriteByte(digits[16])
}
var c byte
for i := 0; i < length; i++ {
if f.Space && i > 0 {
// Separate elements with a space.
buf.WriteByte(' ')
if f.Sharp {
// Add leading 0x or 0X for each element.
buf.WriteByte('0')
buf.WriteByte(digits[16])
}
}
if b != nil {
c = b[i] // Take a byte from the input byte slice.
} else {
c = s[i] // Take a byte from the input string.
}
// Encode each byte as two hexadecimal digits.
buf.WriteByte(digits[c>>4])
buf.WriteByte(digits[c&0xF])
}
// Handle padding to the right.
if f.WidthPresent && f.Width > width && f.Minus {
f.writePadding(f.Width - width)
}
}
// fmt_sx formats a string as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_sx(s, digits string) {
f.fmt_sbx(s, nil, digits)
}
// fmt_bx formats a byte slice as a hexadecimal encoding of its bytes.
func (f *formatInfo) fmt_bx(b []byte, digits string) {
f.fmt_sbx("", b, digits)
}
// fmt_q formats a string as a double-quoted, escaped Go string constant.
// If f.sharp is set a raw (backquoted) string may be returned instead
// if the string does not contain any control characters other than tab.
func (f *formatInfo) fmt_q(s string) {
s = f.truncate(s)
if f.Sharp && strconv.CanBackquote(s) {
f.padString("`" + s + "`")
return
}
buf := f.intbuf[:0]
if f.Plus {
f.pad(strconv.AppendQuoteToASCII(buf, s))
} else {
f.pad(strconv.AppendQuote(buf, s))
}
}
// fmt_c formats an integer as a Unicode character.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatInfo) fmt_c(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
f.pad(buf[:w])
}
// fmt_qc formats an integer as a single-quoted, escaped Go character constant.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatInfo) fmt_qc(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
if f.Plus {
f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
} else {
f.pad(strconv.AppendQuoteRune(buf, r))
}
}
// fmt_float formats a float64. It assumes that verb is a valid format specifier
// for strconv.AppendFloat and therefore fits into a byte.
func (f *formatInfo) fmt_float(v float64, size int, verb rune, prec int) {
// Explicit precision in format specifier overrules default precision.
if f.PrecPresent {
prec = f.Prec
}
// Format number, reserving space for leading + sign if needed.
num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
if num[1] == '-' || num[1] == '+' {
num = num[1:]
} else {
num[0] = '+'
}
// f.space means to add a leading space instead of a "+" sign unless
// the sign is explicitly asked for by f.plus.
if f.Space && num[0] == '+' && !f.Plus {
num[0] = ' '
}
// Special handling for infinities and NaN,
// which don't look like a number so shouldn't be padded with zeros.
if num[1] == 'I' || num[1] == 'N' {
oldZero := f.Zero
f.Zero = false
// Remove sign before NaN if not asked for.
if num[1] == 'N' && !f.Space && !f.Plus {
num = num[1:]
}
f.pad(num)
f.Zero = oldZero
return
}
// The sharp flag forces printing a decimal point for non-binary formats
// and retains trailing zeros, which we may need to restore.
if f.Sharp && verb != 'b' {
digits := 0
switch verb {
case 'v', 'g', 'G':
digits = prec
// If no precision is set explicitly use a precision of 6.
if digits == -1 {
digits = 6
}
}
// Buffer pre-allocated with enough room for
// exponent notations of the form "e+123".
var tailBuf [5]byte
tail := tailBuf[:0]
hasDecimalPoint := false
// Starting from i = 1 to skip sign at num[0].
for i := 1; i < len(num); i++ {
switch num[i] {
case '.':
hasDecimalPoint = true
case 'e', 'E':
tail = append(tail, num[i:]...)
num = num[:i]
default:
digits--
}
}
if !hasDecimalPoint {
num = append(num, '.')
}
for digits > 0 {
num = append(num, '0')
digits--
}
num = append(num, tail...)
}
// We want a sign if asked for and if the sign is not positive.
if f.Plus || num[0] != '+' {
// If we're zero padding to the left we want the sign before the leading zeros.
// Achieve this by writing the sign out and then padding the unsigned number.
if f.Zero && f.WidthPresent && f.Width > len(num) {
f.buf.WriteByte(num[0])
f.writePadding(f.Width - len(num))
f.buf.Write(num[1:])
return
}
f.pad(num)
return
}
// No sign to show and the number is positive; just print the unsigned number.
f.pad(num[1:])
}

186
vendor/golang.org/x/text/message/message.go generated vendored Normal file
View file

@ -0,0 +1,186 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message // import "golang.org/x/text/message"
import (
"io"
"os"
// Include features to facilitate generated catalogs.
_ "golang.org/x/text/feature/plural"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// A Printer implements language-specific formatted I/O analogous to the fmt
// package.
type Printer struct {
// the language
tag language.Tag
toDecimal number.Formatter
toScientific number.Formatter
cat catalog.Catalog
}
type options struct {
cat catalog.Catalog
// TODO:
// - allow %s to print integers in written form (tables are likely too large
// to enable this by default).
// - list behavior
//
}
// An Option defines an option of a Printer.
type Option func(o *options)
// Catalog defines the catalog to be used.
func Catalog(c catalog.Catalog) Option {
return func(o *options) { o.cat = c }
}
// NewPrinter returns a Printer that formats messages tailored to language t.
func NewPrinter(t language.Tag, opts ...Option) *Printer {
options := &options{
cat: DefaultCatalog,
}
for _, o := range opts {
o(options)
}
p := &Printer{
tag: t,
cat: options.cat,
}
p.toDecimal.InitDecimal(t)
p.toScientific.InitScientific(t)
return p
}
// Sprint is like fmt.Sprint, but using language-specific formatting.
func (p *Printer) Sprint(a ...interface{}) string {
pp := newPrinter(p)
pp.doPrint(a)
s := pp.String()
pp.free()
return s
}
// Fprint is like fmt.Fprint, but using language-specific formatting.
func (p *Printer) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
pp.doPrint(a)
n64, err := io.Copy(w, &pp.Buffer)
pp.free()
return int(n64), err
}
// Print is like fmt.Print, but using language-specific formatting.
func (p *Printer) Print(a ...interface{}) (n int, err error) {
return p.Fprint(os.Stdout, a...)
}
// Sprintln is like fmt.Sprintln, but using language-specific formatting.
func (p *Printer) Sprintln(a ...interface{}) string {
pp := newPrinter(p)
pp.doPrintln(a)
s := pp.String()
pp.free()
return s
}
// Fprintln is like fmt.Fprintln, but using language-specific formatting.
func (p *Printer) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
pp.doPrintln(a)
n64, err := io.Copy(w, &pp.Buffer)
pp.free()
return int(n64), err
}
// Println is like fmt.Println, but using language-specific formatting.
func (p *Printer) Println(a ...interface{}) (n int, err error) {
return p.Fprintln(os.Stdout, a...)
}
// Sprintf is like fmt.Sprintf, but using language-specific formatting.
func (p *Printer) Sprintf(key Reference, a ...interface{}) string {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
s := pp.String()
pp.free()
return s
}
// Fprintf is like fmt.Fprintf, but using language-specific formatting.
func (p *Printer) Fprintf(w io.Writer, key Reference, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
n, err = w.Write(pp.Bytes())
pp.free()
return n, err
}
// Printf is like fmt.Printf, but using language-specific formatting.
func (p *Printer) Printf(key Reference, a ...interface{}) (n int, err error) {
pp := newPrinter(p)
lookupAndFormat(pp, key, a)
n, err = os.Stdout.Write(pp.Bytes())
pp.free()
return n, err
}
func lookupAndFormat(p *printer, r Reference, a []interface{}) {
p.fmt.Reset(a)
var id, msg string
switch v := r.(type) {
case string:
id, msg = v, v
case key:
id, msg = v.id, v.fallback
default:
panic("key argument is not a Reference")
}
if p.catContext.Execute(id) == catalog.ErrNotFound {
if p.catContext.Execute(msg) == catalog.ErrNotFound {
p.Render(msg)
return
}
}
}
// Arg implements catmsg.Renderer.
func (p *printer) Arg(i int) interface{} { // TODO, also return "ok" bool
i--
if uint(i) < uint(len(p.fmt.Args)) {
return p.fmt.Args[i]
}
return nil
}
// Render implements catmsg.Renderer.
func (p *printer) Render(msg string) {
p.doPrintf(msg)
}
// A Reference is a string or a message reference.
type Reference interface {
// TODO: also allow []string
}
// Key creates a message Reference for a message where the given id is used for
// message lookup and the fallback is returned when no matches are found.
func Key(id string, fallback string) Reference {
return key{id, fallback}
}
type key struct {
id, fallback string
}

181
vendor/golang.org/x/text/message/message_test.go generated vendored Normal file
View file

@ -0,0 +1,181 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"bytes"
"fmt"
"io"
"testing"
"golang.org/x/text/internal"
"golang.org/x/text/internal/format"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
type formatFunc func(s fmt.State, v rune)
func (f formatFunc) Format(s fmt.State, v rune) { f(s, v) }
func TestBinding(t *testing.T) {
testCases := []struct {
tag string
value interface{}
want string
}{
{"en", 1, "1"},
{"en", "2", "2"},
{ // Language is passed.
"en",
formatFunc(func(fs fmt.State, v rune) {
s := fs.(format.State)
io.WriteString(s, s.Language().String())
}),
"en",
},
}
for i, tc := range testCases {
p := NewPrinter(language.MustParse(tc.tag))
if got := p.Sprint(tc.value); got != tc.want {
t.Errorf("%d:%s:Sprint(%v) = %q; want %q", i, tc.tag, tc.value, got, tc.want)
}
var buf bytes.Buffer
p.Fprint(&buf, tc.value)
if got := buf.String(); got != tc.want {
t.Errorf("%d:%s:Fprint(%v) = %q; want %q", i, tc.tag, tc.value, got, tc.want)
}
}
}
func TestLocalization(t *testing.T) {
type test struct {
tag string
key Reference
args []interface{}
want string
}
args := func(x ...interface{}) []interface{} { return x }
empty := []interface{}{}
joe := []interface{}{"Joe"}
joeAndMary := []interface{}{"Joe", "Mary"}
testCases := []struct {
desc string
cat []entry
test []test
}{{
desc: "empty",
test: []test{
{"en", "key", empty, "key"},
{"en", "", empty, ""},
{"nl", "", empty, ""},
},
}, {
desc: "hierarchical languages",
cat: []entry{
{"en", "hello %s", "Hello %s!"},
{"en-GB", "hello %s", "Hellø %s!"},
{"en-US", "hello %s", "Howdy %s!"},
{"en", "greetings %s and %s", "Greetings %s and %s!"},
},
test: []test{
{"und", "hello %s", joe, "hello Joe"},
{"nl", "hello %s", joe, "hello Joe"},
{"en", "hello %s", joe, "Hello Joe!"},
{"en-US", "hello %s", joe, "Howdy Joe!"},
{"en-GB", "hello %s", joe, "Hellø Joe!"},
{"en-oxendict", "hello %s", joe, "Hello Joe!"},
{"en-US-oxendict-u-ms-metric", "hello %s", joe, "Howdy Joe!"},
{"und", "greetings %s and %s", joeAndMary, "greetings Joe and Mary"},
{"nl", "greetings %s and %s", joeAndMary, "greetings Joe and Mary"},
{"en", "greetings %s and %s", joeAndMary, "Greetings Joe and Mary!"},
{"en-US", "greetings %s and %s", joeAndMary, "Greetings Joe and Mary!"},
{"en-GB", "greetings %s and %s", joeAndMary, "Greetings Joe and Mary!"},
{"en-oxendict", "greetings %s and %s", joeAndMary, "Greetings Joe and Mary!"},
{"en-US-oxendict-u-ms-metric", "greetings %s and %s", joeAndMary, "Greetings Joe and Mary!"},
},
}, {
desc: "references",
cat: []entry{
{"en", "hello", "Hello!"},
},
test: []test{
{"en", "hello", empty, "Hello!"},
{"en", Key("hello", "fallback"), empty, "Hello!"},
{"en", Key("xxx", "fallback"), empty, "fallback"},
{"und", Key("hello", "fallback"), empty, "fallback"},
},
}, {
desc: "zero substitution", // work around limitation of fmt
cat: []entry{
{"en", "hello %s", "Hello!"},
{"en", "hi %s and %s", "Hello %[2]s!"},
},
test: []test{
{"en", "hello %s", joe, "Hello!"},
{"en", "hello %s", joeAndMary, "Hello!"},
{"en", "hi %s and %s", joeAndMary, "Hello Mary!"},
// The following tests resolve to the fallback string.
{"und", "hello", joeAndMary, "hello"},
{"und", "hello %%%%", joeAndMary, "hello %%"},
{"und", "hello %#%%4.2% ", joeAndMary, "hello %% "},
{"und", "hello %s", joeAndMary, "hello Joe%!(EXTRA string=Mary)"},
{"und", "hello %+%%s", joeAndMary, "hello %Joe%!(EXTRA string=Mary)"},
{"und", "hello %-42%%s ", joeAndMary, "hello %Joe %!(EXTRA string=Mary)"},
},
}, {
desc: "number formatting", // work around limitation of fmt
cat: []entry{
{"und", "files", "%d files left"},
{"und", "meters", "%.2f meters"},
{"de", "files", "%d Dateien übrig"},
},
test: []test{
{"en", "meters", args(3000.2), "3,000.20 meters"},
{"en-u-nu-gujr", "files", args(123456), "૧૨૩,૪૫૬ files left"},
{"de", "files", args(1234), "1.234 Dateien übrig"},
{"de-CH", "files", args(1234), "1234 Dateien übrig"},
{"de-CH-u-nu-mong", "files", args(1234), "᠑’᠒᠓᠔ Dateien übrig"},
},
}}
for _, tc := range testCases {
cat, _ := initCat(tc.cat)
for i, pt := range tc.test {
t.Run(fmt.Sprintf("%s:%d", tc.desc, i), func(t *testing.T) {
p := NewPrinter(language.MustParse(pt.tag), Catalog(cat))
if got := p.Sprintf(pt.key, pt.args...); got != pt.want {
t.Errorf("Sprintf(%q, %v) = %s; want %s",
pt.key, pt.args, got, pt.want)
return // Next error will likely be the same.
}
w := &bytes.Buffer{}
p.Fprintf(w, pt.key, pt.args...)
if got := w.String(); got != pt.want {
t.Errorf("Fprintf(%q, %v) = %s; want %s",
pt.key, pt.args, got, pt.want)
}
})
}
}
}
type entry struct{ tag, key, msg string }
func initCat(entries []entry) (*catalog.Builder, []language.Tag) {
tags := []language.Tag{}
cat := catalog.NewBuilder()
for _, e := range entries {
tag := language.MustParse(e.tag)
tags = append(tags, tag)
cat.SetString(tag, e.key, e.msg)
}
return cat, internal.UniqueTags(tags)
}

305
vendor/golang.org/x/text/message/pipeline/extract.go generated vendored Normal file
View file

@ -0,0 +1,305 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pipeline
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/format"
"go/token"
"go/types"
"path"
"path/filepath"
"strings"
"unicode"
"unicode/utf8"
fmtparser "golang.org/x/text/internal/format"
"golang.org/x/tools/go/loader"
)
// TODO:
// - merge information into existing files
// - handle different file formats (PO, XLIFF)
// - handle features (gender, plural)
// - message rewriting
// Extract extracts all strings form the package defined in Config.
func Extract(c *Config) (*Locale, error) {
conf := loader.Config{}
prog, err := loadPackages(&conf, c.Packages)
if err != nil {
return nil, wrap(err, "")
}
// print returns Go syntax for the specified node.
print := func(n ast.Node) string {
var buf bytes.Buffer
format.Node(&buf, conf.Fset, n)
return buf.String()
}
var messages []Message
for _, info := range prog.AllPackages {
for _, f := range info.Files {
// Associate comments with nodes.
cmap := ast.NewCommentMap(prog.Fset, f, f.Comments)
getComment := func(n ast.Node) string {
cs := cmap.Filter(n).Comments()
if len(cs) > 0 {
return strings.TrimSpace(cs[0].Text())
}
return ""
}
// Find function calls.
ast.Inspect(f, func(n ast.Node) bool {
call, ok := n.(*ast.CallExpr)
if !ok {
return true
}
// Skip calls of functions other than
// (*message.Printer).{Sp,Fp,P}rintf.
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
meth := info.Selections[sel]
if meth == nil || meth.Kind() != types.MethodVal {
return true
}
// TODO: remove cheap hack and check if the type either
// implements some interface or is specifically of type
// "golang.org/x/text/message".Printer.
m, ok := extractFuncs[path.Base(meth.Recv().String())]
if !ok {
return true
}
fmtType, ok := m[meth.Obj().Name()]
if !ok {
return true
}
// argn is the index of the format string.
argn := fmtType.arg
if argn >= len(call.Args) {
return true
}
args := call.Args[fmtType.arg:]
fmtMsg, ok := msgStr(info, args[0])
if !ok {
// TODO: identify the type of the format argument. If it
// is not a string, multiple keys may be defined.
return true
}
comment := ""
key := []string{}
if ident, ok := args[0].(*ast.Ident); ok {
key = append(key, ident.Name)
if v, ok := ident.Obj.Decl.(*ast.ValueSpec); ok && v.Comment != nil {
// TODO: get comment above ValueSpec as well
comment = v.Comment.Text()
}
}
arguments := []argument{}
args = args[1:]
simArgs := make([]interface{}, len(args))
for i, arg := range args {
expr := print(arg)
val := ""
if v := info.Types[arg].Value; v != nil {
val = v.ExactString()
simArgs[i] = val
switch arg.(type) {
case *ast.BinaryExpr, *ast.UnaryExpr:
expr = val
}
}
arguments = append(arguments, argument{
ArgNum: i + 1,
Type: info.Types[arg].Type.String(),
UnderlyingType: info.Types[arg].Type.Underlying().String(),
Expr: expr,
Value: val,
Comment: getComment(arg),
Position: posString(conf, info, arg.Pos()),
// TODO report whether it implements
// interfaces plural.Interface,
// gender.Interface.
})
}
msg := ""
ph := placeholders{index: map[string]string{}}
p := fmtparser.Parser{}
p.Reset(simArgs)
for p.SetFormat(fmtMsg); p.Scan(); {
switch p.Status {
case fmtparser.StatusText:
msg += p.Text()
case fmtparser.StatusSubstitution,
fmtparser.StatusBadWidthSubstitution,
fmtparser.StatusBadPrecSubstitution:
arguments[p.ArgNum-1].used = true
arg := arguments[p.ArgNum-1]
sub := p.Text()
if !p.HasIndex {
r, sz := utf8.DecodeLastRuneInString(sub)
sub = fmt.Sprintf("%s[%d]%c", sub[:len(sub)-sz], p.ArgNum, r)
}
msg += fmt.Sprintf("{%s}", ph.addArg(&arg, sub))
}
}
key = append(key, msg)
// Add additional Placeholders that can be used in translations
// that are not present in the string.
for _, arg := range arguments {
if arg.used {
continue
}
ph.addArg(&arg, fmt.Sprintf("%%[%d]v", arg.ArgNum))
}
if c := getComment(call.Args[0]); c != "" {
comment = c
}
messages = append(messages, Message{
ID: key,
Key: fmtMsg,
Message: Text{Msg: msg},
// TODO(fix): this doesn't get the before comment.
Comment: comment,
Placeholders: ph.slice,
Position: posString(conf, info, call.Lparen),
})
return true
})
}
}
out := &Locale{
Language: c.SourceLanguage,
Messages: messages,
}
return out, nil
}
func posString(conf loader.Config, info *loader.PackageInfo, pos token.Pos) string {
p := conf.Fset.Position(pos)
file := fmt.Sprintf("%s:%d:%d", filepath.Base(p.Filename), p.Line, p.Column)
return filepath.Join(info.Pkg.Path(), file)
}
// extractFuncs indicates the types and methods for which to extract strings,
// and which argument to extract.
// TODO: use the types in conf.Import("golang.org/x/text/message") to extract
// the correct instances.
var extractFuncs = map[string]map[string]extractType{
// TODO: Printer -> *golang.org/x/text/message.Printer
"message.Printer": {
"Printf": extractType{arg: 0, format: true},
"Sprintf": extractType{arg: 0, format: true},
"Fprintf": extractType{arg: 1, format: true},
"Lookup": extractType{arg: 0},
},
}
type extractType struct {
// format indicates if the next arg is a formatted string or whether to
// concatenate all arguments
format bool
// arg indicates the position of the argument to extract.
arg int
}
func getID(arg *argument) string {
s := getLastComponent(arg.Expr)
s = strip(s)
s = strings.Replace(s, " ", "", -1)
// For small variable names, use user-defined types for more info.
if len(s) <= 2 && arg.UnderlyingType != arg.Type {
s = getLastComponent(arg.Type)
}
return strings.Title(s)
}
// strip is a dirty hack to convert function calls to placeholder IDs.
func strip(s string) string {
s = strings.Map(func(r rune) rune {
if unicode.IsSpace(r) || r == '-' {
return '_'
}
if !unicode.In(r, unicode.Letter, unicode.Mark) {
return -1
}
return r
}, s)
// Strip "Get" from getter functions.
if strings.HasPrefix(s, "Get") || strings.HasPrefix(s, "get") {
if len(s) > len("get") {
r, _ := utf8.DecodeRuneInString(s)
if !unicode.In(r, unicode.Ll, unicode.M) { // not lower or mark
s = s[len("get"):]
}
}
}
return s
}
type placeholders struct {
index map[string]string
slice []Placeholder
}
func (p *placeholders) addArg(arg *argument, sub string) (id string) {
id = getID(arg)
id1 := id
alt, ok := p.index[id1]
for i := 1; ok && alt != sub; i++ {
id1 = fmt.Sprintf("%s_%d", id, i)
alt, ok = p.index[id1]
}
p.index[id1] = sub
p.slice = append(p.slice, Placeholder{
ID: id1,
String: sub,
Type: arg.Type,
UnderlyingType: arg.UnderlyingType,
ArgNum: arg.ArgNum,
Expr: arg.Expr,
Comment: arg.Comment,
})
return id1
}
func getLastComponent(s string) string {
return s[1+strings.LastIndexByte(s, '.'):]
}
func msgStr(info *loader.PackageInfo, e ast.Expr) (s string, ok bool) {
v := info.Types[e].Value
if v == nil || v.Kind() != constant.String {
return "", false
}
s = constant.StringVal(v)
// Only record strings with letters.
for _, r := range s {
if unicode.In(r, unicode.L) {
return s, true
}
}
return "", false
}

251
vendor/golang.org/x/text/message/pipeline/generate.go generated vendored Normal file
View file

@ -0,0 +1,251 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pipeline
import (
"fmt"
"io"
"regexp"
"sort"
"strings"
"text/template"
"golang.org/x/text/collate"
"golang.org/x/text/feature/plural"
"golang.org/x/text/internal"
"golang.org/x/text/internal/catmsg"
"golang.org/x/text/internal/gen"
"golang.org/x/text/language"
)
var transRe = regexp.MustCompile(`messages\.(.*)\.json`)
// Generate writes a Go file with the given package name to w, which defines a
// Catalog with translated messages.
func Generate(w io.Writer, pkg string, extracted *Locale, trans ...*Locale) (n int, err error) {
// TODO: add in external input. Right now we assume that all files are
// manually created and stored in the textdata directory.
// Build up index of translations and original messages.
translations := map[language.Tag]map[string]Message{}
languages := []language.Tag{}
langVars := []string{}
usedKeys := map[string]int{}
for _, loc := range trans {
tag := loc.Language
if _, ok := translations[tag]; !ok {
translations[tag] = map[string]Message{}
languages = append(languages, tag)
}
for _, m := range loc.Messages {
if !m.Translation.IsEmpty() {
for _, id := range m.ID {
if _, ok := translations[tag][id]; ok {
logf("Duplicate translation in locale %q for message %q", tag, id)
}
translations[tag][id] = m
}
}
}
}
// Verify completeness and register keys.
internal.SortTags(languages)
for _, tag := range languages {
langVars = append(langVars, strings.Replace(tag.String(), "-", "_", -1))
dict := translations[tag]
for _, msg := range extracted.Messages {
for _, id := range msg.ID {
if trans, ok := dict[id]; ok && !trans.Translation.IsEmpty() {
if _, ok := usedKeys[msg.Key]; !ok {
usedKeys[msg.Key] = len(usedKeys)
}
break
}
// TODO: log missing entry.
logf("%s: Missing entry for %q.", tag, id)
}
}
}
cw := gen.NewCodeWriter()
x := &struct {
Fallback language.Tag
Languages []string
}{
Fallback: extracted.Language,
Languages: langVars,
}
if err := lookup.Execute(cw, x); err != nil {
return 0, wrap(err, "error")
}
keyToIndex := []string{}
for k := range usedKeys {
keyToIndex = append(keyToIndex, k)
}
sort.Strings(keyToIndex)
fmt.Fprint(cw, "var messageKeyToIndex = map[string]int{\n")
for _, k := range keyToIndex {
fmt.Fprintf(cw, "%q: %d,\n", k, usedKeys[k])
}
fmt.Fprint(cw, "}\n\n")
for i, tag := range languages {
dict := translations[tag]
a := make([]string, len(usedKeys))
for _, msg := range extracted.Messages {
for _, id := range msg.ID {
if trans, ok := dict[id]; ok && !trans.Translation.IsEmpty() {
m, err := assemble(&msg, &trans.Translation)
if err != nil {
return 0, wrap(err, "error")
}
// TODO: support macros.
data, err := catmsg.Compile(tag, nil, m)
if err != nil {
return 0, wrap(err, "error")
}
key := usedKeys[msg.Key]
if d := a[key]; d != "" && d != data {
logf("Duplicate non-consistent translation for key %q, picking the one for message %q", msg.Key, id)
}
a[key] = string(data)
break
}
}
}
index := []uint32{0}
p := 0
for _, s := range a {
p += len(s)
index = append(index, uint32(p))
}
cw.WriteVar(langVars[i]+"Index", index)
cw.WriteConst(langVars[i]+"Data", strings.Join(a, ""))
}
return cw.WriteGo(w, pkg, "")
}
func assemble(m *Message, t *Text) (msg catmsg.Message, err error) {
keys := []string{}
for k := range t.Var {
keys = append(keys, k)
}
sort.Strings(keys)
var a []catmsg.Message
for _, k := range keys {
t := t.Var[k]
m, err := assemble(m, &t)
if err != nil {
return nil, err
}
a = append(a, &catmsg.Var{Name: k, Message: m})
}
if t.Select != nil {
s, err := assembleSelect(m, t.Select)
if err != nil {
return nil, err
}
a = append(a, s)
}
if t.Msg != "" {
sub, err := m.Substitute(t.Msg)
if err != nil {
return nil, err
}
a = append(a, catmsg.String(sub))
}
switch len(a) {
case 0:
return nil, errorf("generate: empty message")
case 1:
return a[0], nil
default:
return catmsg.FirstOf(a), nil
}
}
func assembleSelect(m *Message, s *Select) (msg catmsg.Message, err error) {
cases := []string{}
for c := range s.Cases {
cases = append(cases, c)
}
sortCases(cases)
caseMsg := []interface{}{}
for _, c := range cases {
cm := s.Cases[c]
m, err := assemble(m, &cm)
if err != nil {
return nil, err
}
caseMsg = append(caseMsg, c, m)
}
ph := m.Placeholder(s.Arg)
switch s.Feature {
case "plural":
// TODO: only printf-style selects are supported as of yet.
return plural.Selectf(ph.ArgNum, ph.String, caseMsg...), nil
}
return nil, errorf("unknown feature type %q", s.Feature)
}
func sortCases(cases []string) {
// TODO: implement full interface.
sort.Slice(cases, func(i, j int) bool {
if cases[j] == "other" && cases[i] != "other" {
return true
}
// the following code relies on '<' < '=' < any letter.
return cmpNumeric(cases[i], cases[j]) == -1
})
}
var cmpNumeric = collate.New(language.Und, collate.Numeric).CompareString
var lookup = template.Must(template.New("gen").Parse(`
import (
"golang.org/x/text/language"
"golang.org/x/text/message"
"golang.org/x/text/message/catalog"
)
type dictionary struct {
index []uint32
data string
}
func (d *dictionary) Lookup(key string) (data string, ok bool) {
p := messageKeyToIndex[key]
start, end := d.index[p], d.index[p+1]
if start == end {
return "", false
}
return d.data[start:end], true
}
func init() {
dict := map[string]catalog.Dictionary{
{{range .Languages}}"{{.}}": &dictionary{index: {{.}}Index, data: {{.}}Data },
{{end}}
}
fallback := language.MustParse("{{.Fallback}}")
cat, err := catalog.NewFromMap(dict, catalog.Fallback(fallback))
if err != nil {
panic(err)
}
message.DefaultCatalog = cat
}
`))

241
vendor/golang.org/x/text/message/pipeline/message.go generated vendored Normal file
View file

@ -0,0 +1,241 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pipeline
import (
"encoding/json"
"strings"
"golang.org/x/text/language"
)
// TODO: these definitions should be moved to a package so that the can be used
// by other tools.
// The file contains the structures used to define translations of a certain
// messages.
//
// A translation may have multiple translations strings, or messages, depending
// on the feature values of the various arguments. For instance, consider
// a hypothetical translation from English to English, where the source defines
// the format string "%d file(s) remaining".
// See the examples directory for examples of extracted messages.
// Config contains configuration for the translation pipeline.
type Config struct {
SourceLanguage language.Tag
// Supported indicates the languages for which data should be generated.
// If unspecified, it will attempt to derive the set of supported languages
// from the context.
Supported []language.Tag
Packages []string
// TODO:
// - Printf-style configuration
// - Template-style configuration
// - Extraction options
// - Rewrite options
// - Generation options
}
// A Locale is used to store all information for a single locale. This type is
// used both for extraction and injection.
type Locale struct {
Language language.Tag `json:"language"`
Messages []Message `json:"messages"`
Macros map[string]Text `json:"macros,omitempty"`
}
// A Message describes a message to be translated.
type Message struct {
// ID contains a list of identifiers for the message.
ID IDList `json:"id"`
// Key is the string that is used to look up the message at runtime.
Key string `json:"key"`
Meaning string `json:"meaning,omitempty"`
Message Text `json:"message"`
Translation Text `json:"translation"`
Comment string `json:"comment,omitempty"`
TranslatorComment string `json:"translatorComment,omitempty"`
Placeholders []Placeholder `json:"placeholders,omitempty"`
// TODO: default placeholder syntax is {foo}. Allow alternative escaping
// like `foo`.
// Extraction information.
Position string `json:"position,omitempty"` // filePosition:line
}
// Placeholder reports the placeholder for the given ID if it is defined or nil
// otherwise.
func (m *Message) Placeholder(id string) *Placeholder {
for _, p := range m.Placeholders {
if p.ID == id {
return &p
}
}
return nil
}
// Substitute replaces placeholders in msg with their original value.
func (m *Message) Substitute(msg string) (sub string, err error) {
last := 0
for i := 0; i < len(msg); {
pLeft := strings.IndexByte(msg[i:], '{')
if pLeft == -1 {
break
}
pLeft += i
pRight := strings.IndexByte(msg[pLeft:], '}')
if pRight == -1 {
return "", errorf("unmatched '}'")
}
pRight += pLeft
id := strings.TrimSpace(msg[pLeft+1 : pRight])
i = pRight + 1
if id != "" && id[0] == '$' {
continue
}
sub += msg[last:pLeft]
last = i
ph := m.Placeholder(id)
if ph == nil {
return "", errorf("unknown placeholder %q in message %q", id, msg)
}
sub += ph.String
}
sub += msg[last:]
return sub, err
}
// A Placeholder is a part of the message that should not be changed by a
// translator. It can be used to hide or prettify format strings (e.g. %d or
// {{.Count}}), hide HTML, or mark common names that should not be translated.
type Placeholder struct {
// ID is the placeholder identifier without the curly braces.
ID string `json:"id"`
// String is the string with which to replace the placeholder. This may be a
// formatting string (for instance "%d" or "{{.Count}}") or a literal string
// (<div>).
String string `json:"string"`
Type string `json:"type"`
UnderlyingType string `json:"underlyingType"`
// ArgNum and Expr are set if the placeholder is a substitution of an
// argument.
ArgNum int `json:"argNum,omitempty"`
Expr string `json:"expr,omitempty"`
Comment string `json:"comment,omitempty"`
Example string `json:"example,omitempty"`
// Features contains the features that are available for the implementation
// of this argument.
Features []Feature `json:"features,omitempty"`
}
// An argument contains information about the arguments passed to a message.
type argument struct {
// ArgNum corresponds to the number that should be used for explicit argument indexes (e.g.
// "%[1]d").
ArgNum int `json:"argNum,omitempty"`
used bool // Used by Placeholder
Type string `json:"type"`
UnderlyingType string `json:"underlyingType"`
Expr string `json:"expr"`
Value string `json:"value,omitempty"`
Comment string `json:"comment,omitempty"`
Position string `json:"position,omitempty"`
}
// Feature holds information about a feature that can be implemented by
// an Argument.
type Feature struct {
Type string `json:"type"` // Right now this is only gender and plural.
// TODO: possible values and examples for the language under consideration.
}
// Text defines a message to be displayed.
type Text struct {
// Msg and Select contains the message to be displayed. Msg may be used as
// a fallback value if none of the select cases match.
Msg string `json:"msg,omitempty"`
Select *Select `json:"select,omitempty"`
// Var defines a map of variables that may be substituted in the selected
// message.
Var map[string]Text `json:"var,omitempty"`
// Example contains an example message formatted with default values.
Example string `json:"example,omitempty"`
}
// IsEmpty reports whether this Text can generate anything.
func (t *Text) IsEmpty() bool {
return t.Msg == "" && t.Select == nil && t.Var == nil
}
// rawText erases the UnmarshalJSON method.
type rawText Text
// UnmarshalJSON implements json.Unmarshaler.
func (t *Text) UnmarshalJSON(b []byte) error {
if b[0] == '"' {
return json.Unmarshal(b, &t.Msg)
}
return json.Unmarshal(b, (*rawText)(t))
}
// MarshalJSON implements json.Marshaler.
func (t *Text) MarshalJSON() ([]byte, error) {
if t.Select == nil && t.Var == nil && t.Example == "" {
return json.Marshal(t.Msg)
}
return json.Marshal((*rawText)(t))
}
// IDList is a set identifiers that each may refer to possibly different
// versions of the same message. When looking up a messages, the first
// identifier in the list takes precedence.
type IDList []string
// UnmarshalJSON implements json.Unmarshaler.
func (id *IDList) UnmarshalJSON(b []byte) error {
if b[0] == '"' {
*id = []string{""}
return json.Unmarshal(b, &((*id)[0]))
}
return json.Unmarshal(b, (*[]string)(id))
}
// MarshalJSON implements json.Marshaler.
func (id *IDList) MarshalJSON() ([]byte, error) {
if len(*id) == 1 {
return json.Marshal((*id)[0])
}
return json.Marshal((*[]string)(id))
}
// Select selects a Text based on the feature value associated with a feature of
// a certain argument.
type Select struct {
Feature string `json:"feature"` // Name of Feature type (e.g plural)
Arg string `json:"arg"` // The placeholder ID
Cases map[string]Text `json:"cases"`
}
// TODO: order matters, but can we derive the ordering from the case keys?
// type Case struct {
// Key string `json:"key"`
// Value Text `json:"value"`
// }

57
vendor/golang.org/x/text/message/pipeline/pipeline.go generated vendored Normal file
View file

@ -0,0 +1,57 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package pipeline provides tools for creating translation pipelines.
//
// NOTE: UNDER DEVELOPMENT. API MAY CHANGE.
package pipeline
import (
"fmt"
"go/build"
"go/parser"
"log"
"golang.org/x/tools/go/loader"
)
const (
extractFile = "extracted.gotext.json"
outFile = "out.gotext.json"
gotextSuffix = ".gotext.json"
)
// NOTE: The command line tool already prefixes with "gotext:".
var (
wrap = func(err error, msg string) error {
return fmt.Errorf("%s: %v", msg, err)
}
wrapf = func(err error, msg string, args ...interface{}) error {
return wrap(err, fmt.Sprintf(msg, args...))
}
errorf = fmt.Errorf
)
// TODO: don't log.
func logf(format string, args ...interface{}) {
log.Printf(format, args...)
}
func loadPackages(conf *loader.Config, args []string) (*loader.Program, error) {
if len(args) == 0 {
args = []string{"."}
}
conf.Build = &build.Default
conf.ParserMode = parser.ParseComments
// Use the initial packages from the command line.
args, err := conf.FromArgs(args, false)
if err != nil {
return nil, wrap(err, "loading packages failed")
}
// Load, parse and type-check the whole program.
return conf.Load()
}

268
vendor/golang.org/x/text/message/pipeline/rewrite.go generated vendored Normal file
View file

@ -0,0 +1,268 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pipeline
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/format"
"go/token"
"io"
"os"
"strings"
"golang.org/x/tools/go/loader"
)
const printerType = "golang.org/x/text/message.Printer"
// Rewrite rewrites the Go files in a single package to use the localization
// machinery and rewrites strings to adopt best practices when possible.
// If w is not nil the generated files are written to it, each files with a
// "--- <filename>" header. Otherwise the files are overwritten.
func Rewrite(w io.Writer, goPackage string) error {
conf := &loader.Config{
AllowErrors: true, // Allow unused instances of message.Printer.
}
prog, err := loadPackages(conf, []string{goPackage})
if err != nil {
return wrap(err, "")
}
for _, info := range prog.InitialPackages() {
for _, f := range info.Files {
// Associate comments with nodes.
// Pick up initialized Printers at the package level.
r := rewriter{info: info, conf: conf}
for _, n := range info.InitOrder {
if t := r.info.Types[n.Rhs].Type.String(); strings.HasSuffix(t, printerType) {
r.printerVar = n.Lhs[0].Name()
}
}
ast.Walk(&r, f)
w := w
if w == nil {
var err error
if w, err = os.Create(conf.Fset.File(f.Pos()).Name()); err != nil {
return wrap(err, "open failed")
}
} else {
fmt.Fprintln(w, "---", conf.Fset.File(f.Pos()).Name())
}
if err := format.Node(w, conf.Fset, f); err != nil {
return wrap(err, "go format failed")
}
}
}
return nil
}
type rewriter struct {
info *loader.PackageInfo
conf *loader.Config
printerVar string
}
// print returns Go syntax for the specified node.
func (r *rewriter) print(n ast.Node) string {
var buf bytes.Buffer
format.Node(&buf, r.conf.Fset, n)
return buf.String()
}
func (r *rewriter) Visit(n ast.Node) ast.Visitor {
// Save the state by scope.
if _, ok := n.(*ast.BlockStmt); ok {
r := *r
return &r
}
// Find Printers created by assignment.
stmt, ok := n.(*ast.AssignStmt)
if ok {
for _, v := range stmt.Lhs {
if r.printerVar == r.print(v) {
r.printerVar = ""
}
}
for i, v := range stmt.Rhs {
if t := r.info.Types[v].Type.String(); strings.HasSuffix(t, printerType) {
r.printerVar = r.print(stmt.Lhs[i])
return r
}
}
}
// Find Printers created by variable declaration.
spec, ok := n.(*ast.ValueSpec)
if ok {
for _, v := range spec.Names {
if r.printerVar == r.print(v) {
r.printerVar = ""
}
}
for i, v := range spec.Values {
if t := r.info.Types[v].Type.String(); strings.HasSuffix(t, printerType) {
r.printerVar = r.print(spec.Names[i])
return r
}
}
}
if r.printerVar == "" {
return r
}
call, ok := n.(*ast.CallExpr)
if !ok {
return r
}
// TODO: Handle literal values?
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return r
}
meth := r.info.Selections[sel]
source := r.print(sel.X)
fun := r.print(sel.Sel)
if meth != nil {
source = meth.Recv().String()
fun = meth.Obj().Name()
}
// TODO: remove cheap hack and check if the type either
// implements some interface or is specifically of type
// "golang.org/x/text/message".Printer.
m, ok := rewriteFuncs[source]
if !ok {
return r
}
rewriteType, ok := m[fun]
if !ok {
return r
}
ident := ast.NewIdent(r.printerVar)
ident.NamePos = sel.X.Pos()
sel.X = ident
if rewriteType.method != "" {
sel.Sel.Name = rewriteType.method
}
// Analyze arguments.
argn := rewriteType.arg
if rewriteType.format || argn >= len(call.Args) {
return r
}
hasConst := false
for _, a := range call.Args[argn:] {
if v := r.info.Types[a].Value; v != nil && v.Kind() == constant.String {
hasConst = true
break
}
}
if !hasConst {
return r
}
sel.Sel.Name = rewriteType.methodf
// We are done if there is only a single string that does not need to be
// escaped.
if len(call.Args) == 1 {
s, ok := constStr(r.info, call.Args[0])
if ok && !strings.Contains(s, "%") && !rewriteType.newLine {
return r
}
}
// Rewrite arguments as format string.
expr := &ast.BasicLit{
ValuePos: call.Lparen,
Kind: token.STRING,
}
newArgs := append(call.Args[:argn:argn], expr)
newStr := []string{}
for i, a := range call.Args[argn:] {
if s, ok := constStr(r.info, a); ok {
newStr = append(newStr, strings.Replace(s, "%", "%%", -1))
} else {
newStr = append(newStr, "%v")
newArgs = append(newArgs, call.Args[argn+i])
}
}
s := strings.Join(newStr, rewriteType.sep)
if rewriteType.newLine {
s += "\n"
}
expr.Value = fmt.Sprintf("%q", s)
call.Args = newArgs
// TODO: consider creating an expression instead of a constant string and
// then wrapping it in an escape function or so:
// call.Args[argn+i] = &ast.CallExpr{
// Fun: &ast.SelectorExpr{
// X: ast.NewIdent("message"),
// Sel: ast.NewIdent("Lookup"),
// },
// Args: []ast.Expr{a},
// }
// }
return r
}
type rewriteType struct {
// method is the name of the equivalent method on a printer, or "" if it is
// the same.
method string
// methodf is the method to use if the arguments can be rewritten as a
// arguments to a printf-style call.
methodf string
// format is true if the method takes a formatting string followed by
// substitution arguments.
format bool
// arg indicates the position of the argument to extract. If all is
// positive, all arguments from this argument onwards needs to be extracted.
arg int
sep string
newLine bool
}
// rewriteFuncs list functions that can be directly mapped to the printer
// functions of the message package.
var rewriteFuncs = map[string]map[string]rewriteType{
// TODO: Printer -> *golang.org/x/text/message.Printer
"fmt": {
"Print": rewriteType{methodf: "Printf"},
"Sprint": rewriteType{methodf: "Sprintf"},
"Fprint": rewriteType{methodf: "Fprintf"},
"Println": rewriteType{methodf: "Printf", sep: " ", newLine: true},
"Sprintln": rewriteType{methodf: "Sprintf", sep: " ", newLine: true},
"Fprintln": rewriteType{methodf: "Fprintf", sep: " ", newLine: true},
"Printf": rewriteType{method: "Printf", format: true},
"Sprintf": rewriteType{method: "Sprintf", format: true},
"Fprintf": rewriteType{method: "Fprintf", format: true},
},
}
func constStr(info *loader.PackageInfo, e ast.Expr) (s string, ok bool) {
v := info.Types[e].Value
if v == nil || v.Kind() != constant.String {
return "", false
}
return constant.StringVal(v), true
}

979
vendor/golang.org/x/text/message/print.go generated vendored Normal file
View file

@ -0,0 +1,979 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package message
import (
"bytes"
"fmt" // TODO: consider copying interfaces from package fmt to avoid dependency.
"math"
"reflect"
"sync"
"unicode/utf8"
"golang.org/x/text/internal/format"
"golang.org/x/text/internal/number"
"golang.org/x/text/language"
"golang.org/x/text/message/catalog"
)
// Strings for use with buffer.WriteString.
// This is less overhead than using buffer.Write with byte arrays.
const (
commaSpaceString = ", "
nilAngleString = "<nil>"
nilParenString = "(nil)"
nilString = "nil"
mapString = "map["
percentBangString = "%!"
missingString = "(MISSING)"
badIndexString = "(BADINDEX)"
panicString = "(PANIC="
extraString = "%!(EXTRA "
badWidthString = "%!(BADWIDTH)"
badPrecString = "%!(BADPREC)"
noVerbString = "%!(NOVERB)"
invReflectString = "<invalid reflect.Value>"
)
var printerPool = sync.Pool{
New: func() interface{} { return new(printer) },
}
// newPrinter allocates a new printer struct or grabs a cached one.
func newPrinter(pp *Printer) *printer {
p := printerPool.Get().(*printer)
p.Printer = *pp
// TODO: cache most of the following call.
p.catContext = pp.cat.Context(pp.tag, p)
p.panicking = false
p.erroring = false
p.fmt.init(&p.Buffer)
return p
}
// free saves used printer structs in printerFree; avoids an allocation per invocation.
func (p *printer) free() {
p.Buffer.Reset()
p.arg = nil
p.value = reflect.Value{}
printerPool.Put(p)
}
// printer is used to store a printer's state.
// It implements "golang.org/x/text/internal/format".State.
type printer struct {
Printer
// the context for looking up message translations
catContext *catalog.Context
// buffer for accumulating output.
bytes.Buffer
// arg holds the current item, as an interface{}.
arg interface{}
// value is used instead of arg for reflect values.
value reflect.Value
// fmt is used to format basic items such as integers or strings.
fmt formatInfo
// panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion.
panicking bool
// erroring is set when printing an error string to guard against calling handleMethods.
erroring bool
}
// Language implements "golang.org/x/text/internal/format".State.
func (p *printer) Language() language.Tag { return p.tag }
func (p *printer) Width() (wid int, ok bool) { return p.fmt.Width, p.fmt.WidthPresent }
func (p *printer) Precision() (prec int, ok bool) { return p.fmt.Prec, p.fmt.PrecPresent }
func (p *printer) Flag(b int) bool {
switch b {
case '-':
return p.fmt.Minus
case '+':
return p.fmt.Plus || p.fmt.PlusV
case '#':
return p.fmt.Sharp || p.fmt.SharpV
case ' ':
return p.fmt.Space
case '0':
return p.fmt.Zero
}
return false
}
// getField gets the i'th field of the struct value.
// If the field is itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
val := v.Field(i)
if val.Kind() == reflect.Interface && !val.IsNil() {
val = val.Elem()
}
return val
}
func (p *printer) unknownType(v reflect.Value) {
if !v.IsValid() {
p.WriteString(nilAngleString)
return
}
p.WriteByte('?')
p.WriteString(v.Type().String())
p.WriteByte('?')
}
func (p *printer) badVerb(verb rune) {
p.erroring = true
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteByte('(')
switch {
case p.arg != nil:
p.WriteString(reflect.TypeOf(p.arg).String())
p.WriteByte('=')
p.printArg(p.arg, 'v')
case p.value.IsValid():
p.WriteString(p.value.Type().String())
p.WriteByte('=')
p.printValue(p.value, 'v', 0)
default:
p.WriteString(nilAngleString)
}
p.WriteByte(')')
p.erroring = false
}
func (p *printer) fmtBool(v bool, verb rune) {
switch verb {
case 't', 'v':
p.fmt.fmt_boolean(v)
default:
p.badVerb(verb)
}
}
// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *printer) fmt0x64(v uint64, leading0x bool) {
sharp := p.fmt.Sharp
p.fmt.Sharp = leading0x
p.fmt.fmt_integer(v, 16, unsigned, ldigits)
p.fmt.Sharp = sharp
}
// fmtInteger formats a signed or unsigned integer.
func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) {
switch verb {
case 'v':
if p.fmt.SharpV && !isSigned {
p.fmt0x64(v, true)
return
}
fallthrough
case 'd':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_integer(v, 10, isSigned, ldigits)
} else {
p.fmtDecimalInt(v, isSigned)
}
case 'b':
p.fmt.fmt_integer(v, 2, isSigned, ldigits)
case 'o':
p.fmt.fmt_integer(v, 8, isSigned, ldigits)
case 'x':
p.fmt.fmt_integer(v, 16, isSigned, ldigits)
case 'X':
p.fmt.fmt_integer(v, 16, isSigned, udigits)
case 'c':
p.fmt.fmt_c(v)
case 'q':
if v <= utf8.MaxRune {
p.fmt.fmt_qc(v)
} else {
p.badVerb(verb)
}
case 'U':
p.fmt.fmt_unicode(v)
default:
p.badVerb(verb)
}
}
// fmtFloat formats a float. The default precision for each verb
// is specified as last argument in the call to fmt_float.
func (p *printer) fmtFloat(v float64, size int, verb rune) {
switch verb {
case 'b':
p.fmt.fmt_float(v, size, verb, -1)
case 'v':
verb = 'g'
fallthrough
case 'g', 'G':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, -1)
} else {
p.fmtVariableFloat(v, size)
}
case 'e', 'E':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, 6)
} else {
p.fmtScientific(v, size, 6)
}
case 'f', 'F':
if p.fmt.Sharp || p.fmt.SharpV {
p.fmt.fmt_float(v, size, verb, 6)
} else {
p.fmtDecimalFloat(v, size, 6)
}
default:
p.badVerb(verb)
}
}
func (p *printer) setFlags(f *number.Formatter) {
f.Flags &^= number.ElideSign
if p.fmt.Plus || p.fmt.Space {
f.Flags |= number.AlwaysSign
if !p.fmt.Plus {
f.Flags |= number.ElideSign
}
} else {
f.Flags &^= number.AlwaysSign
}
}
func (p *printer) updatePadding(f *number.Formatter) {
f.Flags &^= number.PadMask
if p.fmt.Minus {
f.Flags |= number.PadAfterSuffix
} else {
f.Flags |= number.PadBeforePrefix
}
f.PadRune = ' '
f.FormatWidth = uint16(p.fmt.Width)
}
func (p *printer) initDecimal(minFrac, maxFrac int) {
f := &p.toDecimal
f.MinIntegerDigits = 1
f.MaxIntegerDigits = 0
f.MinFractionDigits = uint8(minFrac)
f.MaxFractionDigits = int16(maxFrac)
p.setFlags(f)
f.PadRune = 0
if p.fmt.WidthPresent {
if p.fmt.Zero {
wid := p.fmt.Width
// Use significant integers for this.
// TODO: this is not the same as width, but so be it.
if f.MinFractionDigits > 0 {
wid -= 1 + int(f.MinFractionDigits)
}
if p.fmt.Plus || p.fmt.Space {
wid--
}
if wid > 0 && wid > int(f.MinIntegerDigits) {
f.MinIntegerDigits = uint8(wid)
}
}
p.updatePadding(f)
}
}
func (p *printer) initScientific(minFrac, maxFrac int) {
f := &p.toScientific
if maxFrac < 0 {
f.SetPrecision(maxFrac)
} else {
f.SetPrecision(maxFrac + 1)
f.MinFractionDigits = uint8(minFrac)
f.MaxFractionDigits = int16(maxFrac)
}
f.MinExponentDigits = 2
p.setFlags(f)
f.PadRune = 0
if p.fmt.WidthPresent {
f.Flags &^= number.PadMask
if p.fmt.Zero {
f.PadRune = f.Digit(0)
f.Flags |= number.PadAfterPrefix
} else {
f.PadRune = ' '
f.Flags |= number.PadBeforePrefix
}
p.updatePadding(f)
}
}
func (p *printer) fmtDecimalInt(v uint64, isSigned bool) {
var d number.Decimal
f := &p.toDecimal
if p.fmt.PrecPresent {
p.setFlags(f)
f.MinIntegerDigits = uint8(p.fmt.Prec)
f.MaxIntegerDigits = 0
f.MinFractionDigits = 0
f.MaxFractionDigits = 0
if p.fmt.WidthPresent {
p.updatePadding(f)
}
} else {
p.initDecimal(0, 0)
}
d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
func (p *printer) fmtDecimalFloat(v float64, size, prec int) {
var d number.Decimal
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
p.initDecimal(prec, prec)
d.ConvertFloat(p.toDecimal.RoundingContext, v, size)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
func (p *printer) fmtVariableFloat(v float64, size int) {
prec := -1
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
var d number.Decimal
p.initScientific(0, prec)
d.ConvertFloat(p.toScientific.RoundingContext, v, size)
// Copy logic of 'g' formatting from strconv. It is simplified a bit as
// we don't have to mind having prec > len(d.Digits).
shortest := prec < 0
ePrec := prec
if shortest {
prec = len(d.Digits)
ePrec = 6
} else if prec == 0 {
prec = 1
ePrec = 1
}
exp := int(d.Exp) - 1
if exp < -4 || exp >= ePrec {
p.initScientific(0, prec)
out := p.toScientific.Format([]byte(nil), &d)
p.Buffer.Write(out)
} else {
if prec > int(d.Exp) {
prec = len(d.Digits)
}
if prec -= int(d.Exp); prec < 0 {
prec = 0
}
p.initDecimal(0, prec)
out := p.toDecimal.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
}
func (p *printer) fmtScientific(v float64, size, prec int) {
var d number.Decimal
if p.fmt.PrecPresent {
prec = p.fmt.Prec
}
p.initScientific(prec, prec)
rc := p.toScientific.RoundingContext
d.ConvertFloat(rc, v, size)
out := p.toScientific.Format([]byte(nil), &d)
p.Buffer.Write(out)
}
// fmtComplex formats a complex number v with
// r = real(v) and j = imag(v) as (r+ji) using
// fmtFloat for r and j formatting.
func (p *printer) fmtComplex(v complex128, size int, verb rune) {
// Make sure any unsupported verbs are found before the
// calls to fmtFloat to not generate an incorrect error string.
switch verb {
case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E':
p.WriteByte('(')
p.fmtFloat(real(v), size/2, verb)
// Imaginary part always has a sign.
if math.IsNaN(imag(v)) {
// By CLDR's rules, NaNs do not use patterns or signs. As this code
// relies on AlwaysSign working for imaginary parts, we need to
// manually handle NaNs.
f := &p.toScientific
p.setFlags(f)
p.updatePadding(f)
p.setFlags(f)
nan := f.Symbol(number.SymNan)
extra := 0
if w, ok := p.Width(); ok {
extra = w - utf8.RuneCountInString(nan) - 1
}
if f.Flags&number.PadAfterNumber == 0 {
for ; extra > 0; extra-- {
p.WriteRune(f.PadRune)
}
}
p.WriteString(f.Symbol(number.SymPlusSign))
p.WriteString(nan)
for ; extra > 0; extra-- {
p.WriteRune(f.PadRune)
}
p.WriteString("i)")
return
}
oldPlus := p.fmt.Plus
p.fmt.Plus = true
p.fmtFloat(imag(v), size/2, verb)
p.WriteString("i)") // TODO: use symbol?
p.fmt.Plus = oldPlus
default:
p.badVerb(verb)
}
}
func (p *printer) fmtString(v string, verb rune) {
switch verb {
case 'v':
if p.fmt.SharpV {
p.fmt.fmt_q(v)
} else {
p.fmt.fmt_s(v)
}
case 's':
p.fmt.fmt_s(v)
case 'x':
p.fmt.fmt_sx(v, ldigits)
case 'X':
p.fmt.fmt_sx(v, udigits)
case 'q':
p.fmt.fmt_q(v)
default:
p.badVerb(verb)
}
}
func (p *printer) fmtBytes(v []byte, verb rune, typeString string) {
switch verb {
case 'v', 'd':
if p.fmt.SharpV {
p.WriteString(typeString)
if v == nil {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
for i, c := range v {
if i > 0 {
p.WriteString(commaSpaceString)
}
p.fmt0x64(uint64(c), true)
}
p.WriteByte('}')
} else {
p.WriteByte('[')
for i, c := range v {
if i > 0 {
p.WriteByte(' ')
}
p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits)
}
p.WriteByte(']')
}
case 's':
p.fmt.fmt_s(string(v))
case 'x':
p.fmt.fmt_bx(v, ldigits)
case 'X':
p.fmt.fmt_bx(v, udigits)
case 'q':
p.fmt.fmt_q(string(v))
default:
p.printValue(reflect.ValueOf(v), verb, 0)
}
}
func (p *printer) fmtPointer(value reflect.Value, verb rune) {
var u uintptr
switch value.Kind() {
case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
u = value.Pointer()
default:
p.badVerb(verb)
return
}
switch verb {
case 'v':
if p.fmt.SharpV {
p.WriteByte('(')
p.WriteString(value.Type().String())
p.WriteString(")(")
if u == 0 {
p.WriteString(nilString)
} else {
p.fmt0x64(uint64(u), true)
}
p.WriteByte(')')
} else {
if u == 0 {
p.fmt.padString(nilAngleString)
} else {
p.fmt0x64(uint64(u), !p.fmt.Sharp)
}
}
case 'p':
p.fmt0x64(uint64(u), !p.fmt.Sharp)
case 'b', 'o', 'd', 'x', 'X':
if verb == 'd' {
p.fmt.Sharp = true // Print as standard go. TODO: does this make sense?
}
p.fmtInteger(uint64(u), unsigned, verb)
default:
p.badVerb(verb)
}
}
func (p *printer) catchPanic(arg interface{}, verb rune) {
if err := recover(); err != nil {
// If it's a nil pointer, just say "<nil>". The likeliest causes are a
// Stringer that fails to guard against nil or a nil pointer for a
// value receiver, and in either case, "<nil>" is a nice result.
if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
p.WriteString(nilAngleString)
return
}
// Otherwise print a concise panic message. Most of the time the panic
// value will print itself nicely.
if p.panicking {
// Nested panics; the recursion in printArg cannot succeed.
panic(err)
}
oldFlags := p.fmt.Parser
// For this output we want default behavior.
p.fmt.ClearFlags()
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(panicString)
p.panicking = true
p.printArg(err, 'v')
p.panicking = false
p.WriteByte(')')
p.fmt.Parser = oldFlags
}
}
func (p *printer) handleMethods(verb rune) (handled bool) {
if p.erroring {
return
}
// Is it a Formatter?
if formatter, ok := p.arg.(format.Formatter); ok {
handled = true
defer p.catchPanic(p.arg, verb)
formatter.Format(p, verb)
return
}
if formatter, ok := p.arg.(fmt.Formatter); ok {
handled = true
defer p.catchPanic(p.arg, verb)
formatter.Format(p, verb)
return
}
// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
if p.fmt.SharpV {
if stringer, ok := p.arg.(fmt.GoStringer); ok {
handled = true
defer p.catchPanic(p.arg, verb)
// Print the result of GoString unadorned.
p.fmt.fmt_s(stringer.GoString())
return
}
} else {
// If a string is acceptable according to the format, see if
// the value satisfies one of the string-valued interfaces.
// Println etc. set verb to %v, which is "stringable".
switch verb {
case 'v', 's', 'x', 'X', 'q':
// Is it an error or Stringer?
// The duplication in the bodies is necessary:
// setting handled and deferring catchPanic
// must happen before calling the method.
switch v := p.arg.(type) {
case error:
handled = true
defer p.catchPanic(p.arg, verb)
p.fmtString(v.Error(), verb)
return
case fmt.Stringer:
handled = true
defer p.catchPanic(p.arg, verb)
p.fmtString(v.String(), verb)
return
}
}
}
return false
}
func (p *printer) printArg(arg interface{}, verb rune) {
p.arg = arg
p.value = reflect.Value{}
if arg == nil {
switch verb {
case 'T', 'v':
p.fmt.padString(nilAngleString)
default:
p.badVerb(verb)
}
return
}
// Special processing considerations.
// %T (the value's type) and %p (its address) are special; we always do them first.
switch verb {
case 'T':
p.fmt.fmt_s(reflect.TypeOf(arg).String())
return
case 'p':
p.fmtPointer(reflect.ValueOf(arg), 'p')
return
}
// Some types can be done without reflection.
switch f := arg.(type) {
case bool:
p.fmtBool(f, verb)
case float32:
p.fmtFloat(float64(f), 32, verb)
case float64:
p.fmtFloat(f, 64, verb)
case complex64:
p.fmtComplex(complex128(f), 64, verb)
case complex128:
p.fmtComplex(f, 128, verb)
case int:
p.fmtInteger(uint64(f), signed, verb)
case int8:
p.fmtInteger(uint64(f), signed, verb)
case int16:
p.fmtInteger(uint64(f), signed, verb)
case int32:
p.fmtInteger(uint64(f), signed, verb)
case int64:
p.fmtInteger(uint64(f), signed, verb)
case uint:
p.fmtInteger(uint64(f), unsigned, verb)
case uint8:
p.fmtInteger(uint64(f), unsigned, verb)
case uint16:
p.fmtInteger(uint64(f), unsigned, verb)
case uint32:
p.fmtInteger(uint64(f), unsigned, verb)
case uint64:
p.fmtInteger(f, unsigned, verb)
case uintptr:
p.fmtInteger(uint64(f), unsigned, verb)
case string:
p.fmtString(f, verb)
case []byte:
p.fmtBytes(f, verb, "[]byte")
case reflect.Value:
// Handle extractable values with special methods
// since printValue does not handle them at depth 0.
if f.IsValid() && f.CanInterface() {
p.arg = f.Interface()
if p.handleMethods(verb) {
return
}
}
p.printValue(f, verb, 0)
default:
// If the type is not simple, it might have methods.
if !p.handleMethods(verb) {
// Need to use reflection, since the type had no
// interface methods that could be used for formatting.
p.printValue(reflect.ValueOf(f), verb, 0)
}
}
}
// printValue is similar to printArg but starts with a reflect value, not an interface{} value.
// It does not handle 'p' and 'T' verbs because these should have been already handled by printArg.
func (p *printer) printValue(value reflect.Value, verb rune, depth int) {
// Handle values with special methods if not already handled by printArg (depth == 0).
if depth > 0 && value.IsValid() && value.CanInterface() {
p.arg = value.Interface()
if p.handleMethods(verb) {
return
}
}
p.arg = nil
p.value = value
switch f := value; value.Kind() {
case reflect.Invalid:
if depth == 0 {
p.WriteString(invReflectString)
} else {
switch verb {
case 'v':
p.WriteString(nilAngleString)
default:
p.badVerb(verb)
}
}
case reflect.Bool:
p.fmtBool(f.Bool(), verb)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
p.fmtInteger(uint64(f.Int()), signed, verb)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p.fmtInteger(f.Uint(), unsigned, verb)
case reflect.Float32:
p.fmtFloat(f.Float(), 32, verb)
case reflect.Float64:
p.fmtFloat(f.Float(), 64, verb)
case reflect.Complex64:
p.fmtComplex(f.Complex(), 64, verb)
case reflect.Complex128:
p.fmtComplex(f.Complex(), 128, verb)
case reflect.String:
p.fmtString(f.String(), verb)
case reflect.Map:
if p.fmt.SharpV {
p.WriteString(f.Type().String())
if f.IsNil() {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
} else {
p.WriteString(mapString)
}
keys := f.MapKeys()
for i, key := range keys {
if i > 0 {
if p.fmt.SharpV {
p.WriteString(commaSpaceString)
} else {
p.WriteByte(' ')
}
}
p.printValue(key, verb, depth+1)
p.WriteByte(':')
p.printValue(f.MapIndex(key), verb, depth+1)
}
if p.fmt.SharpV {
p.WriteByte('}')
} else {
p.WriteByte(']')
}
case reflect.Struct:
if p.fmt.SharpV {
p.WriteString(f.Type().String())
}
p.WriteByte('{')
for i := 0; i < f.NumField(); i++ {
if i > 0 {
if p.fmt.SharpV {
p.WriteString(commaSpaceString)
} else {
p.WriteByte(' ')
}
}
if p.fmt.PlusV || p.fmt.SharpV {
if name := f.Type().Field(i).Name; name != "" {
p.WriteString(name)
p.WriteByte(':')
}
}
p.printValue(getField(f, i), verb, depth+1)
}
p.WriteByte('}')
case reflect.Interface:
value := f.Elem()
if !value.IsValid() {
if p.fmt.SharpV {
p.WriteString(f.Type().String())
p.WriteString(nilParenString)
} else {
p.WriteString(nilAngleString)
}
} else {
p.printValue(value, verb, depth+1)
}
case reflect.Array, reflect.Slice:
switch verb {
case 's', 'q', 'x', 'X':
// Handle byte and uint8 slices and arrays special for the above verbs.
t := f.Type()
if t.Elem().Kind() == reflect.Uint8 {
var bytes []byte
if f.Kind() == reflect.Slice {
bytes = f.Bytes()
} else if f.CanAddr() {
bytes = f.Slice(0, f.Len()).Bytes()
} else {
// We have an array, but we cannot Slice() a non-addressable array,
// so we build a slice by hand. This is a rare case but it would be nice
// if reflection could help a little more.
bytes = make([]byte, f.Len())
for i := range bytes {
bytes[i] = byte(f.Index(i).Uint())
}
}
p.fmtBytes(bytes, verb, t.String())
return
}
}
if p.fmt.SharpV {
p.WriteString(f.Type().String())
if f.Kind() == reflect.Slice && f.IsNil() {
p.WriteString(nilParenString)
return
}
p.WriteByte('{')
for i := 0; i < f.Len(); i++ {
if i > 0 {
p.WriteString(commaSpaceString)
}
p.printValue(f.Index(i), verb, depth+1)
}
p.WriteByte('}')
} else {
p.WriteByte('[')
for i := 0; i < f.Len(); i++ {
if i > 0 {
p.WriteByte(' ')
}
p.printValue(f.Index(i), verb, depth+1)
}
p.WriteByte(']')
}
case reflect.Ptr:
// pointer to array or slice or struct? ok at top level
// but not embedded (avoid loops)
if depth == 0 && f.Pointer() != 0 {
switch a := f.Elem(); a.Kind() {
case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map:
p.WriteByte('&')
p.printValue(a, verb, depth+1)
return
}
}
fallthrough
case reflect.Chan, reflect.Func, reflect.UnsafePointer:
p.fmtPointer(f, verb)
default:
p.unknownType(f)
}
}
func (p *printer) badArgNum(verb rune) {
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(badIndexString)
}
func (p *printer) missingArg(verb rune) {
p.WriteString(percentBangString)
p.WriteRune(verb)
p.WriteString(missingString)
}
func (p *printer) doPrintf(fmt string) {
for p.fmt.Parser.SetFormat(fmt); p.fmt.Scan(); {
switch p.fmt.Status {
case format.StatusText:
p.WriteString(p.fmt.Text())
case format.StatusSubstitution:
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusBadWidthSubstitution:
p.WriteString(badWidthString)
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusBadPrecSubstitution:
p.WriteString(badPrecString)
p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb)
case format.StatusNoVerb:
p.WriteString(noVerbString)
case format.StatusBadArgNum:
p.badArgNum(p.fmt.Verb)
case format.StatusMissingArg:
p.missingArg(p.fmt.Verb)
default:
panic("unreachable")
}
}
// Check for extra arguments, but only if there was at least one ordered
// argument. Note that this behavior is necessarily different from fmt:
// different variants of messages may opt to drop some or all of the
// arguments.
if !p.fmt.Reordered && p.fmt.ArgNum < len(p.fmt.Args) && p.fmt.ArgNum != 0 {
p.fmt.ClearFlags()
p.WriteString(extraString)
for i, arg := range p.fmt.Args[p.fmt.ArgNum:] {
if i > 0 {
p.WriteString(commaSpaceString)
}
if arg == nil {
p.WriteString(nilAngleString)
} else {
p.WriteString(reflect.TypeOf(arg).String())
p.WriteString("=")
p.printArg(arg, 'v')
}
}
p.WriteByte(')')
}
}
func (p *printer) doPrint(a []interface{}) {
prevString := false
for argNum, arg := range a {
isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
// Add a space between two non-string arguments.
if argNum > 0 && !isString && !prevString {
p.WriteByte(' ')
}
p.printArg(arg, 'v')
prevString = isString
}
}
// doPrintln is like doPrint but always adds a space between arguments
// and a newline after the last argument.
func (p *printer) doPrintln(a []interface{}) {
for argNum, arg := range a {
if argNum > 0 {
p.WriteByte(' ')
}
p.printArg(arg, 'v')
}
p.WriteByte('\n')
}