2018-09-30 18:02:42 -07:00
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Linux system calls.
// This file is compiled as ordinary Go code,
// but it is also input to mksyscall,
// which parses the //sys lines and generates system call stubs.
// Note that sometimes we use a lowercase //sys name and
// wrap it in our own nicer implementation.
package unix
import (
"syscall"
"unsafe"
)
/ *
* Wrapped
* /
func Access ( path string , mode uint32 ) ( err error ) {
return Faccessat ( AT_FDCWD , path , mode , 0 )
}
func Chmod ( path string , mode uint32 ) ( err error ) {
return Fchmodat ( AT_FDCWD , path , mode , 0 )
}
func Chown ( path string , uid int , gid int ) ( err error ) {
return Fchownat ( AT_FDCWD , path , uid , gid , 0 )
}
func Creat ( path string , mode uint32 ) ( fd int , err error ) {
return Open ( path , O_CREAT | O_WRONLY | O_TRUNC , mode )
}
//sys fchmodat(dirfd int, path string, mode uint32) (err error)
func Fchmodat ( dirfd int , path string , mode uint32 , flags int ) ( err error ) {
// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
// and check the flags. Otherwise the mode would be applied to the symlink
// destination which is not what the user expects.
if flags &^ AT_SYMLINK_NOFOLLOW != 0 {
return EINVAL
} else if flags & AT_SYMLINK_NOFOLLOW != 0 {
return EOPNOTSUPP
}
return fchmodat ( dirfd , path , mode )
}
//sys ioctl(fd int, req uint, arg uintptr) (err error)
// ioctl itself should not be exposed directly, but additional get/set
// functions for specific types are permissible.
// IoctlSetInt performs an ioctl operation which sets an integer value
// on fd, using the specified request number.
func IoctlSetInt ( fd int , req uint , value int ) error {
return ioctl ( fd , req , uintptr ( value ) )
}
func ioctlSetWinsize ( fd int , req uint , value * Winsize ) error {
return ioctl ( fd , req , uintptr ( unsafe . Pointer ( value ) ) )
}
func ioctlSetTermios ( fd int , req uint , value * Termios ) error {
return ioctl ( fd , req , uintptr ( unsafe . Pointer ( value ) ) )
}
// IoctlGetInt performs an ioctl operation which gets an integer value
// from fd, using the specified request number.
func IoctlGetInt ( fd int , req uint ) ( int , error ) {
var value int
err := ioctl ( fd , req , uintptr ( unsafe . Pointer ( & value ) ) )
return value , err
}
func IoctlGetWinsize ( fd int , req uint ) ( * Winsize , error ) {
var value Winsize
err := ioctl ( fd , req , uintptr ( unsafe . Pointer ( & value ) ) )
return & value , err
}
func IoctlGetTermios ( fd int , req uint ) ( * Termios , error ) {
var value Termios
err := ioctl ( fd , req , uintptr ( unsafe . Pointer ( & value ) ) )
return & value , err
}
//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
func Link ( oldpath string , newpath string ) ( err error ) {
return Linkat ( AT_FDCWD , oldpath , AT_FDCWD , newpath , 0 )
}
func Mkdir ( path string , mode uint32 ) ( err error ) {
return Mkdirat ( AT_FDCWD , path , mode )
}
func Mknod ( path string , mode uint32 , dev int ) ( err error ) {
return Mknodat ( AT_FDCWD , path , mode , dev )
}
func Open ( path string , mode int , perm uint32 ) ( fd int , err error ) {
return openat ( AT_FDCWD , path , mode | O_LARGEFILE , perm )
}
//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
func Openat ( dirfd int , path string , flags int , mode uint32 ) ( fd int , err error ) {
return openat ( dirfd , path , flags | O_LARGEFILE , mode )
}
//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
func Ppoll ( fds [ ] PollFd , timeout * Timespec , sigmask * Sigset_t ) ( n int , err error ) {
if len ( fds ) == 0 {
return ppoll ( nil , 0 , timeout , sigmask )
}
return ppoll ( & fds [ 0 ] , len ( fds ) , timeout , sigmask )
}
//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
func Readlink ( path string , buf [ ] byte ) ( n int , err error ) {
return Readlinkat ( AT_FDCWD , path , buf )
}
func Rename ( oldpath string , newpath string ) ( err error ) {
return Renameat ( AT_FDCWD , oldpath , AT_FDCWD , newpath )
}
func Rmdir ( path string ) error {
return Unlinkat ( AT_FDCWD , path , AT_REMOVEDIR )
}
//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
func Symlink ( oldpath string , newpath string ) ( err error ) {
return Symlinkat ( oldpath , AT_FDCWD , newpath )
}
func Unlink ( path string ) error {
return Unlinkat ( AT_FDCWD , path , 0 )
}
//sys Unlinkat(dirfd int, path string, flags int) (err error)
func Utimes ( path string , tv [ ] Timeval ) error {
if tv == nil {
err := utimensat ( AT_FDCWD , path , nil , 0 )
if err != ENOSYS {
return err
}
return utimes ( path , nil )
}
if len ( tv ) != 2 {
return EINVAL
}
var ts [ 2 ] Timespec
ts [ 0 ] = NsecToTimespec ( TimevalToNsec ( tv [ 0 ] ) )
ts [ 1 ] = NsecToTimespec ( TimevalToNsec ( tv [ 1 ] ) )
err := utimensat ( AT_FDCWD , path , ( * [ 2 ] Timespec ) ( unsafe . Pointer ( & ts [ 0 ] ) ) , 0 )
if err != ENOSYS {
return err
}
return utimes ( path , ( * [ 2 ] Timeval ) ( unsafe . Pointer ( & tv [ 0 ] ) ) )
}
//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
func UtimesNano ( path string , ts [ ] Timespec ) error {
if ts == nil {
err := utimensat ( AT_FDCWD , path , nil , 0 )
if err != ENOSYS {
return err
}
return utimes ( path , nil )
}
if len ( ts ) != 2 {
return EINVAL
}
err := utimensat ( AT_FDCWD , path , ( * [ 2 ] Timespec ) ( unsafe . Pointer ( & ts [ 0 ] ) ) , 0 )
if err != ENOSYS {
return err
}
// If the utimensat syscall isn't available (utimensat was added to Linux
// in 2.6.22, Released, 8 July 2007) then fall back to utimes
var tv [ 2 ] Timeval
for i := 0 ; i < 2 ; i ++ {
tv [ i ] = NsecToTimeval ( TimespecToNsec ( ts [ i ] ) )
}
return utimes ( path , ( * [ 2 ] Timeval ) ( unsafe . Pointer ( & tv [ 0 ] ) ) )
}
func UtimesNanoAt ( dirfd int , path string , ts [ ] Timespec , flags int ) error {
if ts == nil {
return utimensat ( dirfd , path , nil , flags )
}
if len ( ts ) != 2 {
return EINVAL
}
return utimensat ( dirfd , path , ( * [ 2 ] Timespec ) ( unsafe . Pointer ( & ts [ 0 ] ) ) , flags )
}
func Futimesat ( dirfd int , path string , tv [ ] Timeval ) error {
if tv == nil {
return futimesat ( dirfd , path , nil )
}
if len ( tv ) != 2 {
return EINVAL
}
return futimesat ( dirfd , path , ( * [ 2 ] Timeval ) ( unsafe . Pointer ( & tv [ 0 ] ) ) )
}
func Futimes ( fd int , tv [ ] Timeval ) ( err error ) {
// Believe it or not, this is the best we can do on Linux
// (and is what glibc does).
return Utimes ( "/proc/self/fd/" + itoa ( fd ) , tv )
}
const ImplementsGetwd = true
//sys Getcwd(buf []byte) (n int, err error)
func Getwd ( ) ( wd string , err error ) {
var buf [ PathMax ] byte
n , err := Getcwd ( buf [ 0 : ] )
if err != nil {
return "" , err
}
// Getcwd returns the number of bytes written to buf, including the NUL.
if n < 1 || n > len ( buf ) || buf [ n - 1 ] != 0 {
return "" , EINVAL
}
return string ( buf [ 0 : n - 1 ] ) , nil
}
func Getgroups ( ) ( gids [ ] int , err error ) {
n , err := getgroups ( 0 , nil )
if err != nil {
return nil , err
}
if n == 0 {
return nil , nil
}
// Sanity check group count. Max is 1<<16 on Linux.
if n < 0 || n > 1 << 20 {
return nil , EINVAL
}
a := make ( [ ] _Gid_t , n )
n , err = getgroups ( n , & a [ 0 ] )
if err != nil {
return nil , err
}
gids = make ( [ ] int , n )
for i , v := range a [ 0 : n ] {
gids [ i ] = int ( v )
}
return
}
func Setgroups ( gids [ ] int ) ( err error ) {
if len ( gids ) == 0 {
return setgroups ( 0 , nil )
}
a := make ( [ ] _Gid_t , len ( gids ) )
for i , v := range gids {
a [ i ] = _Gid_t ( v )
}
return setgroups ( len ( a ) , & a [ 0 ] )
}
type WaitStatus uint32
// Wait status is 7 bits at bottom, either 0 (exited),
// 0x7F (stopped), or a signal number that caused an exit.
// The 0x80 bit is whether there was a core dump.
// An extra number (exit code, signal causing a stop)
// is in the high bits. At least that's the idea.
// There are various irregularities. For example, the
// "continued" status is 0xFFFF, distinguishing itself
// from stopped via the core dump bit.
const (
mask = 0x7F
core = 0x80
exited = 0x00
stopped = 0x7F
shift = 8
)
func ( w WaitStatus ) Exited ( ) bool { return w & mask == exited }
func ( w WaitStatus ) Signaled ( ) bool { return w & mask != stopped && w & mask != exited }
func ( w WaitStatus ) Stopped ( ) bool { return w & 0xFF == stopped }
func ( w WaitStatus ) Continued ( ) bool { return w == 0xFFFF }
func ( w WaitStatus ) CoreDump ( ) bool { return w . Signaled ( ) && w & core != 0 }
func ( w WaitStatus ) ExitStatus ( ) int {
if ! w . Exited ( ) {
return - 1
}
return int ( w >> shift ) & 0xFF
}
func ( w WaitStatus ) Signal ( ) syscall . Signal {
if ! w . Signaled ( ) {
return - 1
}
return syscall . Signal ( w & mask )
}
func ( w WaitStatus ) StopSignal ( ) syscall . Signal {
if ! w . Stopped ( ) {
return - 1
}
return syscall . Signal ( w >> shift ) & 0xFF
}
func ( w WaitStatus ) TrapCause ( ) int {
if w . StopSignal ( ) != SIGTRAP {
return - 1
}
return int ( w >> shift ) >> 8
}
//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
func Wait4 ( pid int , wstatus * WaitStatus , options int , rusage * Rusage ) ( wpid int , err error ) {
var status _C_int
wpid , err = wait4 ( pid , & status , options , rusage )
if wstatus != nil {
* wstatus = WaitStatus ( status )
}
return
}
func Mkfifo ( path string , mode uint32 ) error {
return Mknod ( path , mode | S_IFIFO , 0 )
}
func Mkfifoat ( dirfd int , path string , mode uint32 ) error {
return Mknodat ( dirfd , path , mode | S_IFIFO , 0 )
}
func ( sa * SockaddrInet4 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Port < 0 || sa . Port > 0xFFFF {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_INET
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Port ) )
p [ 0 ] = byte ( sa . Port >> 8 )
p [ 1 ] = byte ( sa . Port )
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . raw . Addr [ i ] = sa . Addr [ i ]
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrInet4 , nil
}
func ( sa * SockaddrInet6 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Port < 0 || sa . Port > 0xFFFF {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_INET6
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Port ) )
p [ 0 ] = byte ( sa . Port >> 8 )
p [ 1 ] = byte ( sa . Port )
sa . raw . Scope_id = sa . ZoneId
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . raw . Addr [ i ] = sa . Addr [ i ]
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrInet6 , nil
}
func ( sa * SockaddrUnix ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
name := sa . Name
n := len ( name )
if n >= len ( sa . raw . Path ) {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_UNIX
for i := 0 ; i < n ; i ++ {
sa . raw . Path [ i ] = int8 ( name [ i ] )
}
// length is family (uint16), name, NUL.
sl := _Socklen ( 2 )
if n > 0 {
sl += _Socklen ( n ) + 1
}
if sa . raw . Path [ 0 ] == '@' {
sa . raw . Path [ 0 ] = 0
// Don't count trailing NUL for abstract address.
sl --
}
return unsafe . Pointer ( & sa . raw ) , sl , nil
}
// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
type SockaddrLinklayer struct {
Protocol uint16
Ifindex int
Hatype uint16
Pkttype uint8
Halen uint8
Addr [ 8 ] byte
raw RawSockaddrLinklayer
}
func ( sa * SockaddrLinklayer ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Ifindex < 0 || sa . Ifindex > 0x7fffffff {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_PACKET
sa . raw . Protocol = sa . Protocol
sa . raw . Ifindex = int32 ( sa . Ifindex )
sa . raw . Hatype = sa . Hatype
sa . raw . Pkttype = sa . Pkttype
sa . raw . Halen = sa . Halen
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . raw . Addr [ i ] = sa . Addr [ i ]
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrLinklayer , nil
}
// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
type SockaddrNetlink struct {
Family uint16
Pad uint16
Pid uint32
Groups uint32
raw RawSockaddrNetlink
}
func ( sa * SockaddrNetlink ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_NETLINK
sa . raw . Pad = sa . Pad
sa . raw . Pid = sa . Pid
sa . raw . Groups = sa . Groups
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrNetlink , nil
}
// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the HCI protocol.
type SockaddrHCI struct {
Dev uint16
Channel uint16
raw RawSockaddrHCI
}
func ( sa * SockaddrHCI ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
sa . raw . Dev = sa . Dev
sa . raw . Channel = sa . Channel
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrHCI , nil
}
// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the L2CAP protocol.
type SockaddrL2 struct {
PSM uint16
CID uint16
Addr [ 6 ] uint8
AddrType uint8
raw RawSockaddrL2
}
func ( sa * SockaddrL2 ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
psm := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Psm ) )
psm [ 0 ] = byte ( sa . PSM )
psm [ 1 ] = byte ( sa . PSM >> 8 )
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . raw . Bdaddr [ i ] = sa . Addr [ len ( sa . Addr ) - 1 - i ]
}
cid := ( * [ 2 ] byte ) ( unsafe . Pointer ( & sa . raw . Cid ) )
cid [ 0 ] = byte ( sa . CID )
cid [ 1 ] = byte ( sa . CID >> 8 )
sa . raw . Bdaddr_type = sa . AddrType
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrL2 , nil
}
// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
// using the RFCOMM protocol.
//
// Server example:
//
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
// Channel: 1,
// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
// })
// _ = Listen(fd, 1)
// nfd, sa, _ := Accept(fd)
// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
// Read(nfd, buf)
//
// Client example:
//
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
// _ = Connect(fd, &SockaddrRFCOMM{
// Channel: 1,
// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
// })
// Write(fd, []byte(`hello`))
type SockaddrRFCOMM struct {
// Addr represents a bluetooth address, byte ordering is little-endian.
Addr [ 6 ] uint8
// Channel is a designated bluetooth channel, only 1-30 are available for use.
// Since Linux 2.6.7 and further zero value is the first available channel.
Channel uint8
raw RawSockaddrRFCOMM
}
func ( sa * SockaddrRFCOMM ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_BLUETOOTH
sa . raw . Channel = sa . Channel
sa . raw . Bdaddr = sa . Addr
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrRFCOMM , nil
}
// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
// The RxID and TxID fields are used for transport protocol addressing in
// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
//
// The SockaddrCAN struct must be bound to the socket file descriptor
// using Bind before the CAN socket can be used.
//
// // Read one raw CAN frame
// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
// addr := &SockaddrCAN{Ifindex: index}
// Bind(fd, addr)
// frame := make([]byte, 16)
// Read(fd, frame)
//
// The full SocketCAN documentation can be found in the linux kernel
// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
type SockaddrCAN struct {
Ifindex int
RxID uint32
TxID uint32
raw RawSockaddrCAN
}
func ( sa * SockaddrCAN ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
if sa . Ifindex < 0 || sa . Ifindex > 0x7fffffff {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_CAN
sa . raw . Ifindex = int32 ( sa . Ifindex )
rx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . RxID ) )
for i := 0 ; i < 4 ; i ++ {
sa . raw . Addr [ i ] = rx [ i ]
}
tx := ( * [ 4 ] byte ) ( unsafe . Pointer ( & sa . TxID ) )
for i := 0 ; i < 4 ; i ++ {
sa . raw . Addr [ i + 4 ] = tx [ i ]
}
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrCAN , nil
}
// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
// SockaddrALG enables userspace access to the Linux kernel's cryptography
// subsystem. The Type and Name fields specify which type of hash or cipher
// should be used with a given socket.
//
// To create a file descriptor that provides access to a hash or cipher, both
// Bind and Accept must be used. Once the setup process is complete, input
// data can be written to the socket, processed by the kernel, and then read
// back as hash output or ciphertext.
//
// Here is an example of using an AF_ALG socket with SHA1 hashing.
// The initial socket setup process is as follows:
//
// // Open a socket to perform SHA1 hashing.
// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
// unix.Bind(fd, addr)
// // Note: unix.Accept does not work at this time; must invoke accept()
// // manually using unix.Syscall.
// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
//
// Once a file descriptor has been returned from Accept, it may be used to
// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
// may be re-used repeatedly with subsequent Write and Read operations.
//
// When hashing a small byte slice or string, a single Write and Read may
// be used:
//
// // Assume hashfd is already configured using the setup process.
// hash := os.NewFile(hashfd, "sha1")
// // Hash an input string and read the results. Each Write discards
// // previous hash state. Read always reads the current state.
// b := make([]byte, 20)
// for i := 0; i < 2; i++ {
// io.WriteString(hash, "Hello, world.")
// hash.Read(b)
// fmt.Println(hex.EncodeToString(b))
// }
// // Output:
// // 2ae01472317d1935a84797ec1983ae243fc6aa28
// // 2ae01472317d1935a84797ec1983ae243fc6aa28
//
// For hashing larger byte slices, or byte streams such as those read from
// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
// the hash digest instead of creating a new one for a given chunk and finalizing it.
//
// // Assume hashfd and addr are already configured using the setup process.
// hash := os.NewFile(hashfd, "sha1")
// // Hash the contents of a file.
// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
// b := make([]byte, 4096)
// for {
// n, err := f.Read(b)
// if err == io.EOF {
// break
// }
// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
// }
// hash.Read(b)
// fmt.Println(hex.EncodeToString(b))
// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
//
// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
type SockaddrALG struct {
Type string
Name string
Feature uint32
Mask uint32
raw RawSockaddrALG
}
func ( sa * SockaddrALG ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
// Leave room for NUL byte terminator.
if len ( sa . Type ) > 13 {
return nil , 0 , EINVAL
}
if len ( sa . Name ) > 63 {
return nil , 0 , EINVAL
}
sa . raw . Family = AF_ALG
sa . raw . Feat = sa . Feature
sa . raw . Mask = sa . Mask
typ , err := ByteSliceFromString ( sa . Type )
if err != nil {
return nil , 0 , err
}
name , err := ByteSliceFromString ( sa . Name )
if err != nil {
return nil , 0 , err
}
copy ( sa . raw . Type [ : ] , typ )
copy ( sa . raw . Name [ : ] , name )
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrALG , nil
}
// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
// bidirectional communication between a hypervisor and its guest virtual
// machines.
type SockaddrVM struct {
// CID and Port specify a context ID and port address for a VM socket.
// Guests have a unique CID, and hosts may have a well-known CID of:
// - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
// - VMADDR_CID_HOST: refers to other processes on the host.
CID uint32
Port uint32
raw RawSockaddrVM
}
func ( sa * SockaddrVM ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_VSOCK
sa . raw . Port = sa . Port
sa . raw . Cid = sa . CID
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrVM , nil
}
type SockaddrXDP struct {
Flags uint16
Ifindex uint32
QueueID uint32
SharedUmemFD uint32
raw RawSockaddrXDP
}
func ( sa * SockaddrXDP ) sockaddr ( ) ( unsafe . Pointer , _Socklen , error ) {
sa . raw . Family = AF_XDP
sa . raw . Flags = sa . Flags
sa . raw . Ifindex = sa . Ifindex
sa . raw . Queue_id = sa . QueueID
sa . raw . Shared_umem_fd = sa . SharedUmemFD
return unsafe . Pointer ( & sa . raw ) , SizeofSockaddrXDP , nil
}
func anyToSockaddr ( fd int , rsa * RawSockaddrAny ) ( Sockaddr , error ) {
switch rsa . Addr . Family {
case AF_NETLINK :
pp := ( * RawSockaddrNetlink ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrNetlink )
sa . Family = pp . Family
sa . Pad = pp . Pad
sa . Pid = pp . Pid
sa . Groups = pp . Groups
return sa , nil
case AF_PACKET :
pp := ( * RawSockaddrLinklayer ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrLinklayer )
sa . Protocol = pp . Protocol
sa . Ifindex = int ( pp . Ifindex )
sa . Hatype = pp . Hatype
sa . Pkttype = pp . Pkttype
sa . Halen = pp . Halen
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . Addr [ i ] = pp . Addr [ i ]
}
return sa , nil
case AF_UNIX :
pp := ( * RawSockaddrUnix ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrUnix )
if pp . Path [ 0 ] == 0 {
// "Abstract" Unix domain socket.
// Rewrite leading NUL as @ for textual display.
// (This is the standard convention.)
// Not friendly to overwrite in place,
// but the callers below don't care.
pp . Path [ 0 ] = '@'
}
// Assume path ends at NUL.
// This is not technically the Linux semantics for
// abstract Unix domain sockets--they are supposed
// to be uninterpreted fixed-size binary blobs--but
// everyone uses this convention.
n := 0
for n < len ( pp . Path ) && pp . Path [ n ] != 0 {
n ++
}
bytes := ( * [ 10000 ] byte ) ( unsafe . Pointer ( & pp . Path [ 0 ] ) ) [ 0 : n ]
sa . Name = string ( bytes )
return sa , nil
case AF_INET :
pp := ( * RawSockaddrInet4 ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrInet4 )
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & pp . Port ) )
sa . Port = int ( p [ 0 ] ) << 8 + int ( p [ 1 ] )
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . Addr [ i ] = pp . Addr [ i ]
}
return sa , nil
case AF_INET6 :
pp := ( * RawSockaddrInet6 ) ( unsafe . Pointer ( rsa ) )
sa := new ( SockaddrInet6 )
p := ( * [ 2 ] byte ) ( unsafe . Pointer ( & pp . Port ) )
sa . Port = int ( p [ 0 ] ) << 8 + int ( p [ 1 ] )
sa . ZoneId = pp . Scope_id
for i := 0 ; i < len ( sa . Addr ) ; i ++ {
sa . Addr [ i ] = pp . Addr [ i ]
}
return sa , nil
case AF_VSOCK :
pp := ( * RawSockaddrVM ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrVM {
CID : pp . Cid ,
Port : pp . Port ,
}
return sa , nil
case AF_BLUETOOTH :
proto , err := GetsockoptInt ( fd , SOL_SOCKET , SO_PROTOCOL )
if err != nil {
return nil , err
}
// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
switch proto {
case BTPROTO_L2CAP :
pp := ( * RawSockaddrL2 ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrL2 {
PSM : pp . Psm ,
CID : pp . Cid ,
Addr : pp . Bdaddr ,
AddrType : pp . Bdaddr_type ,
}
return sa , nil
case BTPROTO_RFCOMM :
pp := ( * RawSockaddrRFCOMM ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrRFCOMM {
Channel : pp . Channel ,
Addr : pp . Bdaddr ,
}
return sa , nil
}
case AF_XDP :
pp := ( * RawSockaddrXDP ) ( unsafe . Pointer ( rsa ) )
sa := & SockaddrXDP {
Flags : pp . Flags ,
Ifindex : pp . Ifindex ,
QueueID : pp . Queue_id ,
SharedUmemFD : pp . Shared_umem_fd ,
}
return sa , nil
}
return nil , EAFNOSUPPORT
}
func Accept ( fd int ) ( nfd int , sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
nfd , err = accept ( fd , & rsa , & len )
if err != nil {
return
}
sa , err = anyToSockaddr ( fd , & rsa )
if err != nil {
Close ( nfd )
nfd = 0
}
return
}
func Accept4 ( fd int , flags int ) ( nfd int , sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
nfd , err = accept4 ( fd , & rsa , & len , flags )
if err != nil {
return
}
if len > SizeofSockaddrAny {
panic ( "RawSockaddrAny too small" )
}
sa , err = anyToSockaddr ( fd , & rsa )
if err != nil {
Close ( nfd )
nfd = 0
}
return
}
func Getsockname ( fd int ) ( sa Sockaddr , err error ) {
var rsa RawSockaddrAny
var len _Socklen = SizeofSockaddrAny
if err = getsockname ( fd , & rsa , & len ) ; err != nil {
return
}
return anyToSockaddr ( fd , & rsa )
}
func GetsockoptIPMreqn ( fd , level , opt int ) ( * IPMreqn , error ) {
var value IPMreqn
vallen := _Socklen ( SizeofIPMreqn )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func GetsockoptUcred ( fd , level , opt int ) ( * Ucred , error ) {
var value Ucred
vallen := _Socklen ( SizeofUcred )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
func GetsockoptTCPInfo ( fd , level , opt int ) ( * TCPInfo , error ) {
var value TCPInfo
vallen := _Socklen ( SizeofTCPInfo )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & value ) , & vallen )
return & value , err
}
// GetsockoptString returns the string value of the socket option opt for the
// socket associated with fd at the given socket level.
func GetsockoptString ( fd , level , opt int ) ( string , error ) {
buf := make ( [ ] byte , 256 )
vallen := _Socklen ( len ( buf ) )
err := getsockopt ( fd , level , opt , unsafe . Pointer ( & buf [ 0 ] ) , & vallen )
if err != nil {
if err == ERANGE {
buf = make ( [ ] byte , vallen )
err = getsockopt ( fd , level , opt , unsafe . Pointer ( & buf [ 0 ] ) , & vallen )
}
if err != nil {
return "" , err
}
}
return string ( buf [ : vallen - 1 ] ) , nil
}
func SetsockoptIPMreqn ( fd , level , opt int , mreq * IPMreqn ) ( err error ) {
return setsockopt ( fd , level , opt , unsafe . Pointer ( mreq ) , unsafe . Sizeof ( * mreq ) )
}
// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
// KeyctlInt calls keyctl commands in which each argument is an int.
// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlBuffer calls keyctl commands in which the third and fourth
// arguments are a buffer and its length, respectively.
// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlString calls keyctl commands which return a string.
// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
func KeyctlString ( cmd int , id int ) ( string , error ) {
// We must loop as the string data may change in between the syscalls.
// We could allocate a large buffer here to reduce the chance that the
// syscall needs to be called twice; however, this is unnecessary as
// the performance loss is negligible.
var buffer [ ] byte
for {
// Try to fill the buffer with data
length , err := KeyctlBuffer ( cmd , id , buffer , 0 )
if err != nil {
return "" , err
}
// Check if the data was written
if length <= len ( buffer ) {
// Exclude the null terminator
return string ( buffer [ : length - 1 ] ) , nil
}
// Make a bigger buffer if needed
buffer = make ( [ ] byte , length )
}
}
// Keyctl commands with special signatures.
// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
func KeyctlGetKeyringID ( id int , create bool ) ( ringid int , err error ) {
createInt := 0
if create {
createInt = 1
}
return KeyctlInt ( KEYCTL_GET_KEYRING_ID , id , createInt , 0 , 0 )
}
// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
// key handle permission mask as described in the "keyctl setperm" section of
// http://man7.org/linux/man-pages/man1/keyctl.1.html.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
func KeyctlSetperm ( id int , perm uint32 ) error {
_ , err := KeyctlInt ( KEYCTL_SETPERM , id , int ( perm ) , 0 , 0 )
return err
}
//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
func KeyctlJoinSessionKeyring ( name string ) ( ringid int , err error ) {
return keyctlJoin ( KEYCTL_JOIN_SESSION_KEYRING , name )
}
//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
// KeyctlSearch implements the KEYCTL_SEARCH command.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
func KeyctlSearch ( ringid int , keyType , description string , destRingid int ) ( id int , err error ) {
return keyctlSearch ( KEYCTL_SEARCH , ringid , keyType , description , destRingid )
}
//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
// of Iovec (each of which represents a buffer) instead of a single buffer.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
func KeyctlInstantiateIOV ( id int , payload [ ] Iovec , ringid int ) error {
return keyctlIOV ( KEYCTL_INSTANTIATE_IOV , id , payload , ringid )
}
//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
// computes a Diffie-Hellman shared secret based on the provide params. The
// secret is written to the provided buffer and the returned size is the number
// of bytes written (returning an error if there is insufficient space in the
// buffer). If a nil buffer is passed in, this function returns the minimum
// buffer length needed to store the appropriate data. Note that this differs
// from KEYCTL_READ's behavior which always returns the requested payload size.
// See the full documentation at:
// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
func KeyctlDHCompute ( params * KeyctlDHParams , buffer [ ] byte ) ( size int , err error ) {
return keyctlDH ( KEYCTL_DH_COMPUTE , params , buffer )
}
func Recvmsg ( fd int , p , oob [ ] byte , flags int ) ( n , oobn int , recvflags int , from Sockaddr , err error ) {
var msg Msghdr
var rsa RawSockaddrAny
msg . Name = ( * byte ) ( unsafe . Pointer ( & rsa ) )
msg . Namelen = uint32 ( SizeofSockaddrAny )
var iov Iovec
if len ( p ) > 0 {
iov . Base = & p [ 0 ]
iov . SetLen ( len ( p ) )
}
var dummy byte
if len ( oob ) > 0 {
if len ( p ) == 0 {
var sockType int
sockType , err = GetsockoptInt ( fd , SOL_SOCKET , SO_TYPE )
if err != nil {
return
}
// receive at least one normal byte
if sockType != SOCK_DGRAM {
iov . Base = & dummy
iov . SetLen ( 1 )
}
}
msg . Control = & oob [ 0 ]
msg . SetControllen ( len ( oob ) )
}
msg . Iov = & iov
msg . Iovlen = 1
if n , err = recvmsg ( fd , & msg , flags ) ; err != nil {
return
}
oobn = int ( msg . Controllen )
recvflags = int ( msg . Flags )
// source address is only specified if the socket is unconnected
if rsa . Addr . Family != AF_UNSPEC {
from , err = anyToSockaddr ( fd , & rsa )
}
return
}
func Sendmsg ( fd int , p , oob [ ] byte , to Sockaddr , flags int ) ( err error ) {
_ , err = SendmsgN ( fd , p , oob , to , flags )
return
}
func SendmsgN ( fd int , p , oob [ ] byte , to Sockaddr , flags int ) ( n int , err error ) {
var ptr unsafe . Pointer
var salen _Socklen
if to != nil {
var err error
ptr , salen , err = to . sockaddr ( )
if err != nil {
return 0 , err
}
}
var msg Msghdr
msg . Name = ( * byte ) ( ptr )
msg . Namelen = uint32 ( salen )
var iov Iovec
if len ( p ) > 0 {
iov . Base = & p [ 0 ]
iov . SetLen ( len ( p ) )
}
var dummy byte
if len ( oob ) > 0 {
if len ( p ) == 0 {
var sockType int
sockType , err = GetsockoptInt ( fd , SOL_SOCKET , SO_TYPE )
if err != nil {
return 0 , err
}
// send at least one normal byte
if sockType != SOCK_DGRAM {
iov . Base = & dummy
iov . SetLen ( 1 )
}
}
msg . Control = & oob [ 0 ]
msg . SetControllen ( len ( oob ) )
}
msg . Iov = & iov
msg . Iovlen = 1
if n , err = sendmsg ( fd , & msg , flags ) ; err != nil {
return 0 , err
}
if len ( oob ) > 0 && len ( p ) == 0 {
n = 0
}
return n , nil
}
// BindToDevice binds the socket associated with fd to device.
func BindToDevice ( fd int , device string ) ( err error ) {
return SetsockoptString ( fd , SOL_SOCKET , SO_BINDTODEVICE , device )
}
//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
func ptracePeek ( req int , pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
// The peek requests are machine-size oriented, so we wrap it
// to retrieve arbitrary-length data.
// The ptrace syscall differs from glibc's ptrace.
// Peeks returns the word in *data, not as the return value.
2019-10-24 19:55:06 -04:00
var buf [ sizeofPtr ] byte
2018-09-30 18:02:42 -07:00
// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
// access (PEEKUSER warns that it might), but if we don't
// align our reads, we might straddle an unmapped page
// boundary and not get the bytes leading up to the page
// boundary.
n := 0
2019-10-24 19:55:06 -04:00
if addr % sizeofPtr != 0 {
err = ptrace ( req , pid , addr - addr % sizeofPtr , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
2018-09-30 18:02:42 -07:00
if err != nil {
return 0 , err
}
2019-10-24 19:55:06 -04:00
n += copy ( out , buf [ addr % sizeofPtr : ] )
2018-09-30 18:02:42 -07:00
out = out [ n : ]
}
// Remainder.
for len ( out ) > 0 {
// We use an internal buffer to guarantee alignment.
// It's not documented if this is necessary, but we're paranoid.
err = ptrace ( req , pid , addr + uintptr ( n ) , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return n , err
}
copied := copy ( out , buf [ 0 : ] )
n += copied
out = out [ copied : ]
}
return n , nil
}
func PtracePeekText ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKTEXT , pid , addr , out )
}
func PtracePeekData ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKDATA , pid , addr , out )
}
func PtracePeekUser ( pid int , addr uintptr , out [ ] byte ) ( count int , err error ) {
return ptracePeek ( PTRACE_PEEKUSR , pid , addr , out )
}
func ptracePoke ( pokeReq int , peekReq int , pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
// As for ptracePeek, we need to align our accesses to deal
// with the possibility of straddling an invalid page.
// Leading edge.
n := 0
2019-10-24 19:55:06 -04:00
if addr % sizeofPtr != 0 {
var buf [ sizeofPtr ] byte
err = ptrace ( peekReq , pid , addr - addr % sizeofPtr , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
2018-09-30 18:02:42 -07:00
if err != nil {
return 0 , err
}
2019-10-24 19:55:06 -04:00
n += copy ( buf [ addr % sizeofPtr : ] , data )
2018-09-30 18:02:42 -07:00
word := * ( ( * uintptr ) ( unsafe . Pointer ( & buf [ 0 ] ) ) )
2019-10-24 19:55:06 -04:00
err = ptrace ( pokeReq , pid , addr - addr % sizeofPtr , word )
2018-09-30 18:02:42 -07:00
if err != nil {
return 0 , err
}
data = data [ n : ]
}
// Interior.
2019-10-24 19:55:06 -04:00
for len ( data ) > sizeofPtr {
2018-09-30 18:02:42 -07:00
word := * ( ( * uintptr ) ( unsafe . Pointer ( & data [ 0 ] ) ) )
err = ptrace ( pokeReq , pid , addr + uintptr ( n ) , word )
if err != nil {
return n , err
}
2019-10-24 19:55:06 -04:00
n += sizeofPtr
data = data [ sizeofPtr : ]
2018-09-30 18:02:42 -07:00
}
// Trailing edge.
if len ( data ) > 0 {
2019-10-24 19:55:06 -04:00
var buf [ sizeofPtr ] byte
2018-09-30 18:02:42 -07:00
err = ptrace ( peekReq , pid , addr + uintptr ( n ) , uintptr ( unsafe . Pointer ( & buf [ 0 ] ) ) )
if err != nil {
return n , err
}
copy ( buf [ 0 : ] , data )
word := * ( ( * uintptr ) ( unsafe . Pointer ( & buf [ 0 ] ) ) )
err = ptrace ( pokeReq , pid , addr + uintptr ( n ) , word )
if err != nil {
return n , err
}
n += len ( data )
}
return n , nil
}
func PtracePokeText ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKETEXT , PTRACE_PEEKTEXT , pid , addr , data )
}
func PtracePokeData ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKEDATA , PTRACE_PEEKDATA , pid , addr , data )
}
func PtracePokeUser ( pid int , addr uintptr , data [ ] byte ) ( count int , err error ) {
return ptracePoke ( PTRACE_POKEUSR , PTRACE_PEEKUSR , pid , addr , data )
}
func PtraceGetRegs ( pid int , regsout * PtraceRegs ) ( err error ) {
return ptrace ( PTRACE_GETREGS , pid , 0 , uintptr ( unsafe . Pointer ( regsout ) ) )
}
func PtraceSetRegs ( pid int , regs * PtraceRegs ) ( err error ) {
return ptrace ( PTRACE_SETREGS , pid , 0 , uintptr ( unsafe . Pointer ( regs ) ) )
}
func PtraceSetOptions ( pid int , options int ) ( err error ) {
return ptrace ( PTRACE_SETOPTIONS , pid , 0 , uintptr ( options ) )
}
func PtraceGetEventMsg ( pid int ) ( msg uint , err error ) {
var data _C_long
err = ptrace ( PTRACE_GETEVENTMSG , pid , 0 , uintptr ( unsafe . Pointer ( & data ) ) )
msg = uint ( data )
return
}
func PtraceCont ( pid int , signal int ) ( err error ) {
return ptrace ( PTRACE_CONT , pid , 0 , uintptr ( signal ) )
}
func PtraceSyscall ( pid int , signal int ) ( err error ) {
return ptrace ( PTRACE_SYSCALL , pid , 0 , uintptr ( signal ) )
}
func PtraceSingleStep ( pid int ) ( err error ) { return ptrace ( PTRACE_SINGLESTEP , pid , 0 , 0 ) }
func PtraceAttach ( pid int ) ( err error ) { return ptrace ( PTRACE_ATTACH , pid , 0 , 0 ) }
func PtraceDetach ( pid int ) ( err error ) { return ptrace ( PTRACE_DETACH , pid , 0 , 0 ) }
//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
func Reboot ( cmd int ) ( err error ) {
return reboot ( LINUX_REBOOT_MAGIC1 , LINUX_REBOOT_MAGIC2 , cmd , "" )
}
2019-10-24 19:55:06 -04:00
func ReadDirent ( fd int , buf [ ] byte ) ( n int , err error ) {
return Getdents ( fd , buf )
2018-09-30 18:02:42 -07:00
}
//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
func Mount ( source string , target string , fstype string , flags uintptr , data string ) ( err error ) {
// Certain file systems get rather angry and EINVAL if you give
// them an empty string of data, rather than NULL.
if data == "" {
return mount ( source , target , fstype , flags , nil )
}
datap , err := BytePtrFromString ( data )
if err != nil {
return err
}
return mount ( source , target , fstype , flags , datap )
}
// Sendto
// Recvfrom
// Socketpair
/ *
* Direct access
* /
//sys Acct(path string) (err error)
//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
//sys Adjtimex(buf *Timex) (state int, err error)
//sys Chdir(path string) (err error)
//sys Chroot(path string) (err error)
//sys ClockGetres(clockid int32, res *Timespec) (err error)
//sys ClockGettime(clockid int32, time *Timespec) (err error)
//sys Close(fd int) (err error)
//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
//sys Dup(oldfd int) (fd int, err error)
//sys Dup3(oldfd int, newfd int, flags int) (err error)
//sysnb EpollCreate1(flag int) (fd int, err error)
//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
//sys Exit(code int) = SYS_EXIT_GROUP
//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
//sys Fchdir(fd int) (err error)
//sys Fchmod(fd int, mode uint32) (err error)
//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
//sys fcntl(fd int, cmd int, arg int) (val int, err error)
//sys Fdatasync(fd int) (err error)
//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
//sys Flistxattr(fd int, dest []byte) (sz int, err error)
//sys Flock(fd int, how int) (err error)
//sys Fremovexattr(fd int, attr string) (err error)
//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
//sys Fsync(fd int) (err error)
//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
//sysnb Getpgid(pid int) (pgid int, err error)
func Getpgrp ( ) ( pid int ) {
pid , _ = Getpgid ( 0 )
return
}
//sysnb Getpid() (pid int)
//sysnb Getppid() (ppid int)
//sys Getpriority(which int, who int) (prio int, err error)
//sys Getrandom(buf []byte, flags int) (n int, err error)
//sysnb Getrusage(who int, rusage *Rusage) (err error)
//sysnb Getsid(pid int) (sid int, err error)
//sysnb Gettid() (tid int)
//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
//sysnb InotifyInit1(flags int) (fd int, err error)
//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
//sysnb Kill(pid int, sig syscall.Signal) (err error)
//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
//sys Listxattr(path string, dest []byte) (sz int, err error)
//sys Llistxattr(path string, dest []byte) (sz int, err error)
//sys Lremovexattr(path string, attr string) (err error)
//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
//sys MemfdCreate(name string, flags int) (fd int, err error)
//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
//sys read(fd int, p []byte) (n int, err error)
//sys Removexattr(path string, attr string) (err error)
2019-10-24 19:55:06 -04:00
//sys Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
2018-09-30 18:02:42 -07:00
//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
//sys Setdomainname(p []byte) (err error)
//sys Sethostname(p []byte) (err error)
//sysnb Setpgid(pid int, pgid int) (err error)
//sysnb Setsid() (pid int, err error)
//sysnb Settimeofday(tv *Timeval) (err error)
//sys Setns(fd int, nstype int) (err error)
// issue 1435.
// On linux Setuid and Setgid only affects the current thread, not the process.
// This does not match what most callers expect so we must return an error
// here rather than letting the caller think that the call succeeded.
func Setuid ( uid int ) ( err error ) {
return EOPNOTSUPP
}
func Setgid ( uid int ) ( err error ) {
return EOPNOTSUPP
}
//sys Setpriority(which int, who int, prio int) (err error)
//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
//sys Sync()
//sys Syncfs(fd int) (err error)
//sysnb Sysinfo(info *Sysinfo_t) (err error)
//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
//sysnb Times(tms *Tms) (ticks uintptr, err error)
//sysnb Umask(mask int) (oldmask int)
//sysnb Uname(buf *Utsname) (err error)
//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
//sys Unshare(flags int) (err error)
//sys write(fd int, p []byte) (n int, err error)
//sys exitThread(code int) (err error) = SYS_EXIT
//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
// mmap varies by architecture; see syscall_linux_*.go.
//sys munmap(addr uintptr, length uintptr) (err error)
var mapper = & mmapper {
active : make ( map [ * byte ] [ ] byte ) ,
mmap : mmap ,
munmap : munmap ,
}
func Mmap ( fd int , offset int64 , length int , prot int , flags int ) ( data [ ] byte , err error ) {
return mapper . Mmap ( fd , offset , length , prot , flags )
}
func Munmap ( b [ ] byte ) ( err error ) {
return mapper . Munmap ( b )
}
//sys Madvise(b []byte, advice int) (err error)
//sys Mprotect(b []byte, prot int) (err error)
//sys Mlock(b []byte) (err error)
//sys Mlockall(flags int) (err error)
//sys Msync(b []byte, flags int) (err error)
//sys Munlock(b []byte) (err error)
//sys Munlockall() (err error)
// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
// using the specified flags.
func Vmsplice ( fd int , iovs [ ] Iovec , flags int ) ( int , error ) {
2019-10-24 19:55:06 -04:00
n , _ , errno := Syscall6 (
SYS_VMSPLICE ,
uintptr ( fd ) ,
uintptr ( unsafe . Pointer ( & iovs [ 0 ] ) ) ,
uintptr ( len ( iovs ) ) ,
uintptr ( flags ) ,
0 ,
0 ,
)
2018-09-30 18:02:42 -07:00
if errno != 0 {
return 0 , syscall . Errno ( errno )
}
return int ( n ) , nil
}
//sys faccessat(dirfd int, path string, mode uint32) (err error)
func Faccessat ( dirfd int , path string , mode uint32 , flags int ) ( err error ) {
if flags & ^ ( AT_SYMLINK_NOFOLLOW | AT_EACCESS ) != 0 {
return EINVAL
}
// The Linux kernel faccessat system call does not take any flags.
// The glibc faccessat implements the flags itself; see
// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
// Because people naturally expect syscall.Faccessat to act
// like C faccessat, we do the same.
if flags == 0 {
return faccessat ( dirfd , path , mode )
}
var st Stat_t
if err := Fstatat ( dirfd , path , & st , flags & AT_SYMLINK_NOFOLLOW ) ; err != nil {
return err
}
mode &= 7
if mode == 0 {
return nil
}
var uid int
if flags & AT_EACCESS != 0 {
uid = Geteuid ( )
} else {
uid = Getuid ( )
}
if uid == 0 {
if mode & 1 == 0 {
// Root can read and write any file.
return nil
}
if st . Mode & 0111 != 0 {
// Root can execute any file that anybody can execute.
return nil
}
return EACCES
}
var fmode uint32
if uint32 ( uid ) == st . Uid {
fmode = ( st . Mode >> 6 ) & 7
} else {
var gid int
if flags & AT_EACCESS != 0 {
gid = Getegid ( )
} else {
gid = Getgid ( )
}
if uint32 ( gid ) == st . Gid {
fmode = ( st . Mode >> 3 ) & 7
} else {
fmode = st . Mode & 7
}
}
if fmode & mode == mode {
return nil
}
return EACCES
}
/ *
* Unimplemented
* /
// AfsSyscall
// Alarm
// ArchPrctl
// Brk
2019-10-24 19:55:06 -04:00
// Capget
// Capset
2018-09-30 18:02:42 -07:00
// ClockNanosleep
// ClockSettime
// Clone
2019-10-24 19:55:06 -04:00
// CreateModule
// DeleteModule
2018-09-30 18:02:42 -07:00
// EpollCtlOld
// EpollPwait
// EpollWaitOld
// Execve
// Fork
// Futex
// GetKernelSyms
// GetMempolicy
// GetRobustList
// GetThreadArea
// Getitimer
// Getpmsg
// IoCancel
// IoDestroy
// IoGetevents
// IoSetup
// IoSubmit
// IoprioGet
// IoprioSet
// KexecLoad
// LookupDcookie
// Mbind
// MigratePages
// Mincore
// ModifyLdt
// Mount
// MovePages
// MqGetsetattr
// MqNotify
// MqOpen
// MqTimedreceive
// MqTimedsend
// MqUnlink
// Mremap
// Msgctl
// Msgget
// Msgrcv
// Msgsnd
// Nfsservctl
// Personality
// Pselect6
// Ptrace
// Putpmsg
2019-10-24 19:55:06 -04:00
// QueryModule
2018-09-30 18:02:42 -07:00
// Quotactl
// Readahead
// Readv
// RemapFilePages
// RestartSyscall
// RtSigaction
// RtSigpending
// RtSigprocmask
// RtSigqueueinfo
// RtSigreturn
// RtSigsuspend
// RtSigtimedwait
// SchedGetPriorityMax
// SchedGetPriorityMin
// SchedGetparam
// SchedGetscheduler
// SchedRrGetInterval
// SchedSetparam
// SchedYield
// Security
// Semctl
// Semget
// Semop
// Semtimedop
// SetMempolicy
// SetRobustList
// SetThreadArea
// SetTidAddress
// Shmat
// Shmctl
// Shmdt
// Shmget
// Sigaltstack
2019-10-24 19:55:06 -04:00
// Signalfd
2018-09-30 18:02:42 -07:00
// Swapoff
// Swapon
// Sysfs
// TimerCreate
// TimerDelete
// TimerGetoverrun
// TimerGettime
// TimerSettime
// Timerfd
// Tkill (obsolete)
// Tuxcall
// Umount2
// Uselib
// Utimensat
// Vfork
// Vhangup
// Vserver
// Waitid
// _Sysctl