diff --git a/schedulers/proactive_dynamic_capping/README.md b/schedulers/proactive_dynamic_capping/README.md
new file mode 100644
index 0000000..60f4431
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/README.md
@@ -0,0 +1,10 @@
+##Proactive Dynamic Capping
+
+Perform Cluster wide dynamic capping.
+
+Offer 2 methods:
+	1. First Come First Serve -- For each task that needs to be scheduled, in the order in which it arrives, compute the cluster wide cap.
+	2. Rank based cluster wide capping -- Sort a given set of tasks to be scheduled, in ascending order of requested watts, and then compute the cluster wide cap for each of the tasks in the ordered set.
+
+#Note
+	The github.com folder contains a library that is required to compute the median of a given set of values.
diff --git a/schedulers/proactive_dynamic_capping/main.go b/schedulers/proactive_dynamic_capping/main.go
new file mode 100644
index 0000000..d705017
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/main.go
@@ -0,0 +1,99 @@
+package main
+
+import (
+  "constants"
+  "fmt"
+  "math/rand"
+  "task"
+  "proactive_dynamic_capping"
+  )
+
+func sample_available_power() map[string]float64{
+  return map[string]float64{
+    "stratos-001":100.0,
+    "stratos-002":150.0,
+    "stratos-003":80.0,
+    "stratos-004":90.0,
+  }
+}
+
+func get_random_power(min, max int) int {
+  return rand.Intn(max - min) + min
+}
+
+func cap_value_one_task_fcfs(capper *proactive_dynamic_capping.Capper) {
+  fmt.Println("==== FCFS, Number of tasks: 1 ====")
+  available_power := sample_available_power()
+  tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
+    "minife_command", 4.0, 10, 50, 1)
+  if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
+    fmt.Println("task = " + tsk.String())
+    fmt.Printf("cap value = %f\n", cap_value)
+  }
+}
+
+func cap_value_window_size_tasks_fcfs(capper *proactive_dynamic_capping.Capper) {
+  fmt.Println()
+  fmt.Println("==== FCFS, Number of tasks: 3 (window size) ====")
+  available_power := sample_available_power()
+  for i := 0; i < constants.Window_size; i++ {
+    tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
+      "minife_command", 4.0, 10, get_random_power(30, 150), 1)
+    fmt.Printf("task%d = %s\n", i, tsk.String())
+    if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
+      fmt.Printf("CAP: %f\n", cap_value)
+    }
+  }
+}
+
+func cap_value_more_than_window_size_tasks_fcfs(capper *proactive_dynamic_capping.Capper) {
+  fmt.Println()
+  fmt.Println("==== FCFS, Number of tasks: >3 (> window_size) ====")
+  available_power := sample_available_power()
+  for i := 0; i < constants.Window_size + 2; i++ {
+    tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
+      "minife_command", 4.0, 10, get_random_power(30, 150), 1)
+    fmt.Printf("task%d = %s\n", i, tsk.String())
+    if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
+      fmt.Printf("CAP: %f\n", cap_value)
+    }
+  }
+}
+
+func cap_values_for_ranked_tasks(capper *proactive_dynamic_capping.Capper) {
+  fmt.Println()
+  fmt.Println("==== Ranked, Number of tasks: 5 (window size + 2) ====")
+  available_power := sample_available_power()
+  var tasks_to_schedule []*task.Task
+  for i := 0; i < constants.Window_size + 2; i++ {
+    tasks_to_schedule = append(tasks_to_schedule,
+      task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
+        "minife_command", 4.0, 10, get_random_power(30, 150), 1))
+  }
+  // Printing the tasks that need to be scheduled.
+  index := 0
+  for _, tsk := range tasks_to_schedule {
+    fmt.Printf("task%d = %s\n", index, tsk.String())
+    index++
+  }
+  if sorted_tasks_to_be_scheduled, cwcv, err := capper.Ranked_determine_cap(available_power, tasks_to_schedule); err == nil {
+    fmt.Printf("The cap values are: ")
+    fmt.Println(cwcv)
+    fmt.Println("The order of tasks to be scheduled :-")
+    for _, tsk := range sorted_tasks_to_be_scheduled {
+      fmt.Println(tsk.String())
+    }
+  }
+}
+
+func main() {
+  capper := proactive_dynamic_capping.GetInstance()
+  cap_value_one_task_fcfs(capper)
+  capper.Clear()
+  cap_value_window_size_tasks_fcfs(capper)
+  capper.Clear()
+  cap_value_more_than_window_size_tasks_fcfs(capper)
+  capper.Clear()
+  cap_values_for_ranked_tasks(capper)
+  capper.Clear()
+}
diff --git a/schedulers/proactive_dynamic_capping/src/constants/constants.go b/schedulers/proactive_dynamic_capping/src/constants/constants.go
new file mode 100644
index 0000000..0b1a0cc
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/src/constants/constants.go
@@ -0,0 +1,39 @@
+/*
+Constants that are used across scripts
+1. The available hosts = stratos-00x (x varies from 1 to 8)
+2. cap_margin = percentage of the requested power to allocate
+3. power_threshold = overloading factor
+4. total_power = total power per node
+5. window_size = number of tasks to consider for computation of the dynamic cap.
+*/
+package constants
+
+var Hosts = []string{"stratos-001", "stratos-002",
+            "stratos-003", "stratos-004",
+            "stratos-005", "stratos-006",
+            "stratos-007", "stratos-008"}
+
+/*
+  Margin with respect to the required power for a job.
+  So, if power required = 10W, the node would be capped to 75%*10W.
+  This value can be changed upon convenience.
+*/
+var Cap_margin = 0.75
+
+// Lower bound of the power threshold for a tasks
+var Power_threshold = 0.6
+
+// Total power per node
+var Total_power = map[string]float64 {
+  "stratos-001": 100.0,
+  "stratos-002": 150.0,
+  "stratos-003": 80.0,
+  "stratos-004": 90.0,
+  "stratos-005": 200.0,
+  "stratos-006": 100.0,
+  "stratos-007": 175.0,
+  "stratos-008": 175.0,
+}
+
+// Window size for running average
+var Window_size = 3
diff --git a/schedulers/proactive_dynamic_capping/src/github.com/montanaflynn/stats b/schedulers/proactive_dynamic_capping/src/github.com/montanaflynn/stats
new file mode 160000
index 0000000..60dcacf
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/src/github.com/montanaflynn/stats
@@ -0,0 +1 @@
+Subproject commit 60dcacf48f43d6dd654d0ed94120ff5806c5ca5c
diff --git a/schedulers/proactive_dynamic_capping/src/proactive_dynamic_capping/capper.go b/schedulers/proactive_dynamic_capping/src/proactive_dynamic_capping/capper.go
new file mode 100644
index 0000000..4e183f3
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/src/proactive_dynamic_capping/capper.go
@@ -0,0 +1,235 @@
+/*
+Cluster wide dynamic capping
+Step1. Compute running average of tasks in window.
+Step2. Compute what percentage of available power of each node, is the running average.
+Step3. Compute the median of the percentages and this is the percentage that the cluster needs to be cpaped at.
+
+1. First Fit Scheduling -- Perform the above steps for each task that needs to be scheduled.
+2. Rank based Scheduling -- Sort a set of tasks to be scheduled, in ascending order of power, and then perform the above steps for each of them in the sorted order.
+*/
+
+package proactive_dynamic_capping
+
+import (
+  "constants"
+  "container/list"
+  "errors"
+  "github.com/montanaflynn/stats"
+  "task"
+  "sort"
+  "sync"
+)
+
+// Structure containing utility data structures used to compute cluster wide dyanmic cap.
+type Capper struct {
+  // window of tasks.
+  window_of_tasks list.List
+  // The current sum of requested powers of the tasks in the window.
+  current_sum float64
+  // The current number of tasks in the window.
+  number_of_tasks_in_window int
+}
+
+// Defining constructor for Capper.
+func NewCapper() *Capper {
+  return &Capper{current_sum: 0.0, number_of_tasks_in_window: 0}
+}
+
+// For locking on operations that may result in race conditions.
+var mutex sync.Mutex
+
+// Singleton instance of Capper
+var singleton_capper *Capper
+// Retrieve the singleton instance of Capper.
+func GetInstance() *Capper {
+  if singleton_capper == nil {
+    mutex.Lock()
+    singleton_capper = NewCapper()
+    mutex.Unlock()
+  } else {
+    // Do nothing
+  }
+  return singleton_capper
+}
+
+// Clear and initialize all the members of Capper.
+func (capper Capper) Clear() {
+  capper.window_of_tasks.Init()
+  capper.current_sum = 0
+  capper.number_of_tasks_in_window = 0
+}
+
+// Compute the average of watts of all the tasks in the window.
+func (capper Capper) average() float64 {
+  return capper.current_sum / float64(capper.window_of_tasks.Len())
+}
+
+/*
+ Compute the running average
+
+ Using Capper#window_of_tasks to store the tasks in the window. Task at position 0 (oldest task) removed when window is full and new task arrives.
+*/
+func (capper Capper) running_average_of_watts(tsk *task.Task) float64 {
+  var average float64
+  if capper.number_of_tasks_in_window < constants.Window_size {
+    capper.window_of_tasks.PushBack(tsk)
+    capper.number_of_tasks_in_window++
+    capper.current_sum += float64(tsk.Watts)
+  } else {
+    task_to_remove_element := capper.window_of_tasks.Front()
+    if task_to_remove, ok := task_to_remove_element.Value.(*task.Task); ok {
+      capper.current_sum -= float64(task_to_remove.Watts)
+      capper.window_of_tasks.Remove(task_to_remove_element)
+    }
+    capper.window_of_tasks.PushBack(tsk)
+    capper.current_sum += float64(tsk.Watts)
+  }
+  average = capper.average()
+  return average
+}
+
+/*
+ Calculating cap value
+
+ 1. Sorting the values of running_average_available_power_percentage in ascending order.
+ 2. Computing the median of the above sorted values.
+ 3. The median is now the cap value.
+*/
+func (capper Capper) get_cap(running_average_available_power_percentage map[string]float64) float64 {
+  var values []float64
+  // Validation
+  if running_average_available_power_percentage == nil {
+    return 100.0
+  }
+  for _, apower := range running_average_available_power_percentage {
+    values = append(values, apower)
+  }
+  // sorting the values in ascending order
+  sort.Float64s(values)
+  // Calculating the median
+  if median, err := stats.Median(values); err == nil {
+    return median
+  }
+  // should never reach here. If here, then just setting the cap value to be 100
+  return 100.0
+}
+
+// In place sorting of tasks to be scheduled based on the requested watts.
+func qsort_tasks(low int, high int, tasks_to_sort []*task.Task) {
+  i := low
+  j := high
+  // calculating the pivot
+  pivot_index := low + (high - low)/2
+  pivot := tasks_to_sort[pivot_index]
+  for i <= j {
+    for tasks_to_sort[i].Watts < pivot.Watts {
+      i++
+    }
+    for tasks_to_sort[j].Watts > pivot.Watts {
+      j--
+    }
+    if i <= j {
+      temp := tasks_to_sort[i]
+      tasks_to_sort[i] = tasks_to_sort[j]
+      tasks_to_sort[j] = temp
+      i++
+      j--
+    }
+  }
+  if low < j {
+    qsort_tasks(low, j, tasks_to_sort)
+  }
+  if i < high {
+    qsort_tasks(i, high, tasks_to_sort)
+  }
+}
+
+// Sorting tasks in ascending order of requested watts.
+func (capper Capper) sort_tasks(tasks_to_sort []*task.Task) {
+  qsort_tasks(0, len(tasks_to_sort)-1, tasks_to_sort)
+}
+
+/*
+Remove entry for finished task.
+Electron needs to call this whenever a task completes so that the finished task no longer contributes to the computation of the cluster wide cap.
+*/
+func (capper Capper) Task_finished(finished_task *task.Task) {
+  // If the window is empty then just return. Should not be entering this condition as it would mean that there is a bug.
+  if capper.window_of_tasks.Len() == 0 {
+    return
+  }
+
+  // Checking whether the finished task is currently present in the window of tasks.
+  var task_element_to_remove *list.Element
+  for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
+    if tsk, ok := task_element.Value.(*task.Task); ok {
+      if task.Compare(tsk, finished_task) {
+        task_element_to_remove = task_element
+      }
+    }
+  }
+
+  // If finished task is there in the window of tasks, then we need to remove the task from the same and modify the members of Capper accordingly.
+  if task_to_remove, ok := task_element_to_remove.Value.(*task.Task); ok {
+    capper.window_of_tasks.Remove(task_element_to_remove)
+    capper.number_of_tasks_in_window -= 1
+    capper.current_sum -= float64(task_to_remove.Watts)
+  }
+}
+
+// Ranked based scheduling
+func (capper Capper) Ranked_determine_cap(available_power map[string]float64, tasks_to_schedule []*task.Task) ([]*task.Task, map[int]float64, error) {
+  // Validation
+  if available_power == nil || len(tasks_to_schedule) == 0 {
+    return nil, nil, errors.New("No available power and no tasks to schedule.")
+  } else {
+    // Need to sort the tasks in ascending order of requested power
+    capper.sort_tasks(tasks_to_schedule)
+
+    // Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
+    cluster_wide_cap_values := make(map[int]float64)
+    index := 0
+    for _, tsk := range tasks_to_schedule {
+      /*
+        Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
+        Calling Fcfs_determine_cap(...) just to avoid redundant code.
+      */
+      if cap, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
+        cluster_wide_cap_values[index] = cap
+      } else {
+        return nil, nil, err
+      }
+      index++
+    }
+    // Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
+    return tasks_to_schedule, cluster_wide_cap_values, nil
+  }
+}
+
+// First come first serve scheduling.
+func (capper Capper) Fcfs_determine_cap(available_power map[string]float64, new_task *task.Task) (float64, error) {
+  // Validation
+  if available_power == nil {
+    // If no power available power, then capping the cluster at 100%. Electron might choose to queue the task.
+    return 100.0, errors.New("No available power.")
+  } else {
+    mutex.Lock()
+    // Need to calcualte the running average
+    running_average := capper.running_average_of_watts(new_task)
+    // What percent of available power for each node is the running average
+    running_average_available_power_percentage := make(map[string]float64)
+    for node, apower := range available_power {
+      if apower >= running_average {
+        running_average_available_power_percentage[node] = (running_average/apower) * 100
+      } else {
+        // We don't consider this node in the offers
+      }
+    }
+
+    // Determine the cluster wide cap value.
+    cap_value := capper.get_cap(running_average_available_power_percentage)
+    // Electron has to now cap the cluster to this value before launching the next task.
+    mutex.Unlock()
+    return cap_value, nil
+  }
+}
diff --git a/schedulers/proactive_dynamic_capping/src/task/task.go b/schedulers/proactive_dynamic_capping/src/task/task.go
new file mode 100644
index 0000000..47d8aa5
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/src/task/task.go
@@ -0,0 +1,73 @@
+package task
+
+import (
+  "constants"
+  "encoding/json"
+  "reflect"
+  "strconv"
+  "utilities"
+)
+
+/*
+  Blueprint for the task.
+	Members:
+		image: <image tag>
+		name: <benchmark name>
+		host: <host on which the task needs to be run>
+		cmd: <command to run the task>
+		cpu: <CPU requirement>
+		ram: <RAM requirement>
+		watts: <Power requirement>
+		inst: <Number of instances>
+*/
+type Task struct {
+  Image string
+  Name string
+  Host string
+  CMD string
+  CPU float64
+  RAM int
+  Watts int
+  Inst int
+}
+
+// Defining a constructor for Task
+func NewTask(image string, name string, host string,
+  cmd string, cpu float64, ram int, watts int, inst int) *Task {
+  return &Task{Image: image, Name: name, Host: host, CPU: cpu,
+                RAM: ram, Watts: watts, Inst: inst}
+}
+
+// Update the host on which the task needs to be scheduled.
+func (task Task) Update_host(new_host string) {
+  // Validation
+  if _, ok := constants.Total_power[new_host]; ok {
+    task.Host = new_host
+  }
+}
+
+// Stringify task instance
+func (task Task) String() string {
+  task_map := make(map[string]string)
+  task_map["image"] = task.Image
+  task_map["name"] = task.Name
+  task_map["host"] = task.Host
+  task_map["cmd"] = task.CMD
+  task_map["cpu"] = utils.FloatToString(task.CPU)
+  task_map["ram"] =  strconv.Itoa(task.RAM)
+  task_map["watts"] =  strconv.Itoa(task.Watts)
+  task_map["inst"] = strconv.Itoa(task.Inst)
+
+  json_string, _ := json.Marshal(task_map)
+  return string(json_string)
+}
+
+// Compare one task to another. 2 tasks are the same if all the corresponding members are the same.
+func Compare(task *Task, other_task *Task) bool {
+  // If comparing the same pointers (checking the addresses).
+  if task == other_task {
+    return true
+  }
+  // Checking member equality
+  return reflect.DeepEqual(*task, *other_task)
+}
diff --git a/schedulers/proactive_dynamic_capping/src/utilities/utils.go b/schedulers/proactive_dynamic_capping/src/utilities/utils.go
new file mode 100644
index 0000000..5f2e341
--- /dev/null
+++ b/schedulers/proactive_dynamic_capping/src/utilities/utils.go
@@ -0,0 +1,9 @@
+package utils
+
+import "strconv"
+
+// Convert float64 to string
+func FloatToString(input float64) string {
+  // Precision is 2, Base is 64
+  return strconv.FormatFloat(input, 'f', 2, 64)
+}