Removed these files and integrated them with electron
This commit is contained in:
parent
04d6d4b631
commit
37b918d494
7 changed files with 0 additions and 475 deletions
|
@ -1,19 +0,0 @@
|
|||
##Proactive Dynamic Capping
|
||||
|
||||
Perform Cluster wide dynamic capping.
|
||||
|
||||
Offer 2 methods:
|
||||
1. First Come First Serve -- For each task that needs to be scheduled, in the order in which it arrives, compute the cluster wide cap.
|
||||
2. Rank based cluster wide capping -- Sort a given set of tasks to be scheduled, in ascending order of requested watts, and then compute the cluster wide cap for each of the tasks in the ordered set.
|
||||
|
||||
|
||||
main.go contains a set of test functions for the above algorithm.
|
||||
|
||||
#Please run the following commands to install dependencies and run the test code.
|
||||
```
|
||||
go build
|
||||
go run main.go
|
||||
```
|
||||
|
||||
#Note
|
||||
The github.com folder contains a library that is required to compute the median of a given set of values.
|
|
@ -1,99 +0,0 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"constants"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"task"
|
||||
"proactive_dynamic_capping"
|
||||
)
|
||||
|
||||
func sample_available_power() map[string]float64{
|
||||
return map[string]float64{
|
||||
"stratos-001":100.0,
|
||||
"stratos-002":150.0,
|
||||
"stratos-003":80.0,
|
||||
"stratos-004":90.0,
|
||||
}
|
||||
}
|
||||
|
||||
func get_random_power(min, max int) int {
|
||||
return rand.Intn(max - min) + min
|
||||
}
|
||||
|
||||
func cap_value_one_task_fcfs(capper *proactive_dynamic_capping.Capper) {
|
||||
fmt.Println("==== FCFS, Number of tasks: 1 ====")
|
||||
available_power := sample_available_power()
|
||||
tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
|
||||
"minife_command", 4.0, 10, 50, 1)
|
||||
if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
|
||||
fmt.Println("task = " + tsk.String())
|
||||
fmt.Printf("cap value = %f\n", cap_value)
|
||||
}
|
||||
}
|
||||
|
||||
func cap_value_window_size_tasks_fcfs(capper *proactive_dynamic_capping.Capper) {
|
||||
fmt.Println()
|
||||
fmt.Println("==== FCFS, Number of tasks: 3 (window size) ====")
|
||||
available_power := sample_available_power()
|
||||
for i := 0; i < constants.Window_size; i++ {
|
||||
tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
|
||||
"minife_command", 4.0, 10, get_random_power(30, 150), 1)
|
||||
fmt.Printf("task%d = %s\n", i, tsk.String())
|
||||
if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
|
||||
fmt.Printf("CAP: %f\n", cap_value)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func cap_value_more_than_window_size_tasks_fcfs(capper *proactive_dynamic_capping.Capper) {
|
||||
fmt.Println()
|
||||
fmt.Println("==== FCFS, Number of tasks: >3 (> window_size) ====")
|
||||
available_power := sample_available_power()
|
||||
for i := 0; i < constants.Window_size + 2; i++ {
|
||||
tsk := task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
|
||||
"minife_command", 4.0, 10, get_random_power(30, 150), 1)
|
||||
fmt.Printf("task%d = %s\n", i, tsk.String())
|
||||
if cap_value, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
|
||||
fmt.Printf("CAP: %f\n", cap_value)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func cap_values_for_ranked_tasks(capper *proactive_dynamic_capping.Capper) {
|
||||
fmt.Println()
|
||||
fmt.Println("==== Ranked, Number of tasks: 5 (window size + 2) ====")
|
||||
available_power := sample_available_power()
|
||||
var tasks_to_schedule []*task.Task
|
||||
for i := 0; i < constants.Window_size + 2; i++ {
|
||||
tasks_to_schedule = append(tasks_to_schedule,
|
||||
task.NewTask("gouravr/minife:v5", "minife:v5", "stratos-001",
|
||||
"minife_command", 4.0, 10, get_random_power(30, 150), 1))
|
||||
}
|
||||
// Printing the tasks that need to be scheduled.
|
||||
index := 0
|
||||
for _, tsk := range tasks_to_schedule {
|
||||
fmt.Printf("task%d = %s\n", index, tsk.String())
|
||||
index++
|
||||
}
|
||||
if sorted_tasks_to_be_scheduled, cwcv, err := capper.Ranked_determine_cap(available_power, tasks_to_schedule); err == nil {
|
||||
fmt.Printf("The cap values are: ")
|
||||
fmt.Println(cwcv)
|
||||
fmt.Println("The order of tasks to be scheduled :-")
|
||||
for _, tsk := range sorted_tasks_to_be_scheduled {
|
||||
fmt.Println(tsk.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func main() {
|
||||
capper := proactive_dynamic_capping.GetInstance()
|
||||
cap_value_one_task_fcfs(capper)
|
||||
capper.Clear()
|
||||
cap_value_window_size_tasks_fcfs(capper)
|
||||
capper.Clear()
|
||||
cap_value_more_than_window_size_tasks_fcfs(capper)
|
||||
capper.Clear()
|
||||
cap_values_for_ranked_tasks(capper)
|
||||
capper.Clear()
|
||||
}
|
|
@ -1,39 +0,0 @@
|
|||
/*
|
||||
Constants that are used across scripts
|
||||
1. The available hosts = stratos-00x (x varies from 1 to 8)
|
||||
2. cap_margin = percentage of the requested power to allocate
|
||||
3. power_threshold = overloading factor
|
||||
4. total_power = total power per node
|
||||
5. window_size = number of tasks to consider for computation of the dynamic cap.
|
||||
*/
|
||||
package constants
|
||||
|
||||
var Hosts = []string{"stratos-001", "stratos-002",
|
||||
"stratos-003", "stratos-004",
|
||||
"stratos-005", "stratos-006",
|
||||
"stratos-007", "stratos-008"}
|
||||
|
||||
/*
|
||||
Margin with respect to the required power for a job.
|
||||
So, if power required = 10W, the node would be capped to 75%*10W.
|
||||
This value can be changed upon convenience.
|
||||
*/
|
||||
var Cap_margin = 0.75
|
||||
|
||||
// Lower bound of the power threshold for a tasks
|
||||
var Power_threshold = 0.6
|
||||
|
||||
// Total power per node
|
||||
var Total_power = map[string]float64 {
|
||||
"stratos-001": 100.0,
|
||||
"stratos-002": 150.0,
|
||||
"stratos-003": 80.0,
|
||||
"stratos-004": 90.0,
|
||||
"stratos-005": 200.0,
|
||||
"stratos-006": 100.0,
|
||||
"stratos-007": 175.0,
|
||||
"stratos-008": 175.0,
|
||||
}
|
||||
|
||||
// Window size for running average
|
||||
var Window_size = 3
|
|
@ -1 +0,0 @@
|
|||
Subproject commit 60dcacf48f43d6dd654d0ed94120ff5806c5ca5c
|
|
@ -1,235 +0,0 @@
|
|||
/*
|
||||
Cluster wide dynamic capping
|
||||
Step1. Compute running average of tasks in window.
|
||||
Step2. Compute what percentage of available power of each node, is the running average.
|
||||
Step3. Compute the median of the percentages and this is the percentage that the cluster needs to be cpaped at.
|
||||
|
||||
1. First Fit Scheduling -- Perform the above steps for each task that needs to be scheduled.
|
||||
2. Rank based Scheduling -- Sort a set of tasks to be scheduled, in ascending order of power, and then perform the above steps for each of them in the sorted order.
|
||||
*/
|
||||
|
||||
package proactive_dynamic_capping
|
||||
|
||||
import (
|
||||
"constants"
|
||||
"container/list"
|
||||
"errors"
|
||||
"github.com/montanaflynn/stats"
|
||||
"task"
|
||||
"sort"
|
||||
"sync"
|
||||
)
|
||||
|
||||
// Structure containing utility data structures used to compute cluster wide dyanmic cap.
|
||||
type Capper struct {
|
||||
// window of tasks.
|
||||
window_of_tasks list.List
|
||||
// The current sum of requested powers of the tasks in the window.
|
||||
current_sum float64
|
||||
// The current number of tasks in the window.
|
||||
number_of_tasks_in_window int
|
||||
}
|
||||
|
||||
// Defining constructor for Capper.
|
||||
func NewCapper() *Capper {
|
||||
return &Capper{current_sum: 0.0, number_of_tasks_in_window: 0}
|
||||
}
|
||||
|
||||
// For locking on operations that may result in race conditions.
|
||||
var mutex sync.Mutex
|
||||
|
||||
// Singleton instance of Capper
|
||||
var singleton_capper *Capper
|
||||
// Retrieve the singleton instance of Capper.
|
||||
func GetInstance() *Capper {
|
||||
if singleton_capper == nil {
|
||||
mutex.Lock()
|
||||
singleton_capper = NewCapper()
|
||||
mutex.Unlock()
|
||||
} else {
|
||||
// Do nothing
|
||||
}
|
||||
return singleton_capper
|
||||
}
|
||||
|
||||
// Clear and initialize all the members of Capper.
|
||||
func (capper Capper) Clear() {
|
||||
capper.window_of_tasks.Init()
|
||||
capper.current_sum = 0
|
||||
capper.number_of_tasks_in_window = 0
|
||||
}
|
||||
|
||||
// Compute the average of watts of all the tasks in the window.
|
||||
func (capper Capper) average() float64 {
|
||||
return capper.current_sum / float64(capper.window_of_tasks.Len())
|
||||
}
|
||||
|
||||
/*
|
||||
Compute the running average
|
||||
|
||||
Using Capper#window_of_tasks to store the tasks in the window. Task at position 0 (oldest task) removed when window is full and new task arrives.
|
||||
*/
|
||||
func (capper Capper) running_average_of_watts(tsk *task.Task) float64 {
|
||||
var average float64
|
||||
if capper.number_of_tasks_in_window < constants.Window_size {
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.number_of_tasks_in_window++
|
||||
capper.current_sum += float64(tsk.Watts)
|
||||
} else {
|
||||
task_to_remove_element := capper.window_of_tasks.Front()
|
||||
if task_to_remove, ok := task_to_remove_element.Value.(*task.Task); ok {
|
||||
capper.current_sum -= float64(task_to_remove.Watts)
|
||||
capper.window_of_tasks.Remove(task_to_remove_element)
|
||||
}
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.current_sum += float64(tsk.Watts)
|
||||
}
|
||||
average = capper.average()
|
||||
return average
|
||||
}
|
||||
|
||||
/*
|
||||
Calculating cap value
|
||||
|
||||
1. Sorting the values of running_average_available_power_percentage in ascending order.
|
||||
2. Computing the median of the above sorted values.
|
||||
3. The median is now the cap value.
|
||||
*/
|
||||
func (capper Capper) get_cap(running_average_available_power_percentage map[string]float64) float64 {
|
||||
var values []float64
|
||||
// Validation
|
||||
if running_average_available_power_percentage == nil {
|
||||
return 100.0
|
||||
}
|
||||
for _, apower := range running_average_available_power_percentage {
|
||||
values = append(values, apower)
|
||||
}
|
||||
// sorting the values in ascending order
|
||||
sort.Float64s(values)
|
||||
// Calculating the median
|
||||
if median, err := stats.Median(values); err == nil {
|
||||
return median
|
||||
}
|
||||
// should never reach here. If here, then just setting the cap value to be 100
|
||||
return 100.0
|
||||
}
|
||||
|
||||
// In place sorting of tasks to be scheduled based on the requested watts.
|
||||
func qsort_tasks(low int, high int, tasks_to_sort []*task.Task) {
|
||||
i := low
|
||||
j := high
|
||||
// calculating the pivot
|
||||
pivot_index := low + (high - low)/2
|
||||
pivot := tasks_to_sort[pivot_index]
|
||||
for i <= j {
|
||||
for tasks_to_sort[i].Watts < pivot.Watts {
|
||||
i++
|
||||
}
|
||||
for tasks_to_sort[j].Watts > pivot.Watts {
|
||||
j--
|
||||
}
|
||||
if i <= j {
|
||||
temp := tasks_to_sort[i]
|
||||
tasks_to_sort[i] = tasks_to_sort[j]
|
||||
tasks_to_sort[j] = temp
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
if low < j {
|
||||
qsort_tasks(low, j, tasks_to_sort)
|
||||
}
|
||||
if i < high {
|
||||
qsort_tasks(i, high, tasks_to_sort)
|
||||
}
|
||||
}
|
||||
|
||||
// Sorting tasks in ascending order of requested watts.
|
||||
func (capper Capper) sort_tasks(tasks_to_sort []*task.Task) {
|
||||
qsort_tasks(0, len(tasks_to_sort)-1, tasks_to_sort)
|
||||
}
|
||||
|
||||
/*
|
||||
Remove entry for finished task.
|
||||
Electron needs to call this whenever a task completes so that the finished task no longer contributes to the computation of the cluster wide cap.
|
||||
*/
|
||||
func (capper Capper) Task_finished(finished_task *task.Task) {
|
||||
// If the window is empty then just return. Should not be entering this condition as it would mean that there is a bug.
|
||||
if capper.window_of_tasks.Len() == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Checking whether the finished task is currently present in the window of tasks.
|
||||
var task_element_to_remove *list.Element
|
||||
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
|
||||
if tsk, ok := task_element.Value.(*task.Task); ok {
|
||||
if task.Compare(tsk, finished_task) {
|
||||
task_element_to_remove = task_element
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If finished task is there in the window of tasks, then we need to remove the task from the same and modify the members of Capper accordingly.
|
||||
if task_to_remove, ok := task_element_to_remove.Value.(*task.Task); ok {
|
||||
capper.window_of_tasks.Remove(task_element_to_remove)
|
||||
capper.number_of_tasks_in_window -= 1
|
||||
capper.current_sum -= float64(task_to_remove.Watts)
|
||||
}
|
||||
}
|
||||
|
||||
// Ranked based scheduling
|
||||
func (capper Capper) Ranked_determine_cap(available_power map[string]float64, tasks_to_schedule []*task.Task) ([]*task.Task, map[int]float64, error) {
|
||||
// Validation
|
||||
if available_power == nil || len(tasks_to_schedule) == 0 {
|
||||
return nil, nil, errors.New("No available power and no tasks to schedule.")
|
||||
} else {
|
||||
// Need to sort the tasks in ascending order of requested power
|
||||
capper.sort_tasks(tasks_to_schedule)
|
||||
|
||||
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
|
||||
cluster_wide_cap_values := make(map[int]float64)
|
||||
index := 0
|
||||
for _, tsk := range tasks_to_schedule {
|
||||
/*
|
||||
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
|
||||
Calling Fcfs_determine_cap(...) just to avoid redundant code.
|
||||
*/
|
||||
if cap, err := capper.Fcfs_determine_cap(available_power, tsk); err == nil {
|
||||
cluster_wide_cap_values[index] = cap
|
||||
} else {
|
||||
return nil, nil, err
|
||||
}
|
||||
index++
|
||||
}
|
||||
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
|
||||
return tasks_to_schedule, cluster_wide_cap_values, nil
|
||||
}
|
||||
}
|
||||
|
||||
// First come first serve scheduling.
|
||||
func (capper Capper) Fcfs_determine_cap(available_power map[string]float64, new_task *task.Task) (float64, error) {
|
||||
// Validation
|
||||
if available_power == nil {
|
||||
// If no power available power, then capping the cluster at 100%. Electron might choose to queue the task.
|
||||
return 100.0, errors.New("No available power.")
|
||||
} else {
|
||||
mutex.Lock()
|
||||
// Need to calcualte the running average
|
||||
running_average := capper.running_average_of_watts(new_task)
|
||||
// What percent of available power for each node is the running average
|
||||
running_average_available_power_percentage := make(map[string]float64)
|
||||
for node, apower := range available_power {
|
||||
if apower >= running_average {
|
||||
running_average_available_power_percentage[node] = (running_average/apower) * 100
|
||||
} else {
|
||||
// We don't consider this node in the offers
|
||||
}
|
||||
}
|
||||
|
||||
// Determine the cluster wide cap value.
|
||||
cap_value := capper.get_cap(running_average_available_power_percentage)
|
||||
// Electron has to now cap the cluster to this value before launching the next task.
|
||||
mutex.Unlock()
|
||||
return cap_value, nil
|
||||
}
|
||||
}
|
|
@ -1,73 +0,0 @@
|
|||
package task
|
||||
|
||||
import (
|
||||
"constants"
|
||||
"encoding/json"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"utilities"
|
||||
)
|
||||
|
||||
/*
|
||||
Blueprint for the task.
|
||||
Members:
|
||||
image: <image tag>
|
||||
name: <benchmark name>
|
||||
host: <host on which the task needs to be run>
|
||||
cmd: <command to run the task>
|
||||
cpu: <CPU requirement>
|
||||
ram: <RAM requirement>
|
||||
watts: <Power requirement>
|
||||
inst: <Number of instances>
|
||||
*/
|
||||
type Task struct {
|
||||
Image string
|
||||
Name string
|
||||
Host string
|
||||
CMD string
|
||||
CPU float64
|
||||
RAM int
|
||||
Watts int
|
||||
Inst int
|
||||
}
|
||||
|
||||
// Defining a constructor for Task
|
||||
func NewTask(image string, name string, host string,
|
||||
cmd string, cpu float64, ram int, watts int, inst int) *Task {
|
||||
return &Task{Image: image, Name: name, Host: host, CPU: cpu,
|
||||
RAM: ram, Watts: watts, Inst: inst}
|
||||
}
|
||||
|
||||
// Update the host on which the task needs to be scheduled.
|
||||
func (task Task) Update_host(new_host string) {
|
||||
// Validation
|
||||
if _, ok := constants.Total_power[new_host]; ok {
|
||||
task.Host = new_host
|
||||
}
|
||||
}
|
||||
|
||||
// Stringify task instance
|
||||
func (task Task) String() string {
|
||||
task_map := make(map[string]string)
|
||||
task_map["image"] = task.Image
|
||||
task_map["name"] = task.Name
|
||||
task_map["host"] = task.Host
|
||||
task_map["cmd"] = task.CMD
|
||||
task_map["cpu"] = utils.FloatToString(task.CPU)
|
||||
task_map["ram"] = strconv.Itoa(task.RAM)
|
||||
task_map["watts"] = strconv.Itoa(task.Watts)
|
||||
task_map["inst"] = strconv.Itoa(task.Inst)
|
||||
|
||||
json_string, _ := json.Marshal(task_map)
|
||||
return string(json_string)
|
||||
}
|
||||
|
||||
// Compare one task to another. 2 tasks are the same if all the corresponding members are the same.
|
||||
func Compare(task *Task, other_task *Task) bool {
|
||||
// If comparing the same pointers (checking the addresses).
|
||||
if task == other_task {
|
||||
return true
|
||||
}
|
||||
// Checking member equality
|
||||
return reflect.DeepEqual(*task, *other_task)
|
||||
}
|
|
@ -1,9 +0,0 @@
|
|||
package utils
|
||||
|
||||
import "strconv"
|
||||
|
||||
// Convert float64 to string
|
||||
func FloatToString(input float64) string {
|
||||
// Precision is 2, Base is 64
|
||||
return strconv.FormatFloat(input, 'f', 2, 64)
|
||||
}
|
Reference in a new issue