fixed naming convensions to be camel cased. Reformatted the code.
This commit is contained in:
parent
55ea017a9a
commit
50d1d79051
6 changed files with 147 additions and 147 deletions
|
@ -16,71 +16,71 @@ var Hosts = []string{"stratos-001.cs.binghamton.edu", "stratos-002.cs.binghamton
|
|||
"stratos-007.cs.binghamton.edu", "stratos-008.cs.binghamton.edu"}
|
||||
|
||||
// Add a new host to the slice of hosts.
|
||||
func AddNewHost(new_host string) bool {
|
||||
func AddNewHost(newHost string) bool {
|
||||
// Validation
|
||||
if new_host == "" {
|
||||
if newHost == "" {
|
||||
return false
|
||||
} else {
|
||||
Hosts = append(Hosts, new_host)
|
||||
Hosts = append(Hosts, newHost)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Lower bound of the percentage of requested power, that can be allocated to a task.
|
||||
var Power_threshold = 0.6 // Right now saying that a task will never be given lesser than 60% of the power it requested.
|
||||
var PowerThreshold = 0.6 // Right now saying that a task will never be given lesser than 60% of the power it requested.
|
||||
|
||||
/*
|
||||
Margin with respect to the required power for a job.
|
||||
So, if power required = 10W, the node would be capped to 75%*10W.
|
||||
This value can be changed upon convenience.
|
||||
*/
|
||||
var Cap_margin = 0.50
|
||||
var CapMargin = 0.70
|
||||
|
||||
// Modify the cap margin.
|
||||
func UpdateCapMargin(new_cap_margin float64) bool {
|
||||
func UpdateCapMargin(newCapMargin float64) bool {
|
||||
// Checking if the new_cap_margin is less than the power threshold.
|
||||
if new_cap_margin < Starvation_factor {
|
||||
if newCapMargin < StarvationFactor {
|
||||
return false
|
||||
} else {
|
||||
Cap_margin = new_cap_margin
|
||||
CapMargin = newCapMargin
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Threshold factor that would make (Cap_margin * task.Watts) equal to (60/100 * task.Watts).
|
||||
var Starvation_factor = 0.8
|
||||
var StarvationFactor = 0.8
|
||||
|
||||
// Total power per node.
|
||||
var Total_power map[string]float64
|
||||
var TotalPower map[string]float64
|
||||
|
||||
// Initialize the total power per node. This should be done before accepting any set of tasks for scheduling.
|
||||
func AddTotalPowerForHost(host string, total_power float64) bool {
|
||||
func AddTotalPowerForHost(host string, totalPower float64) bool {
|
||||
// Validation
|
||||
is_correct_host := false
|
||||
for _, existing_host := range Hosts {
|
||||
if host == existing_host {
|
||||
is_correct_host = true
|
||||
isCorrectHost := false
|
||||
for _, existingHost := range Hosts {
|
||||
if host == existingHost {
|
||||
isCorrectHost = true
|
||||
}
|
||||
}
|
||||
|
||||
if !is_correct_host {
|
||||
if !isCorrectHost {
|
||||
return false
|
||||
} else {
|
||||
Total_power[host] = total_power
|
||||
TotalPower[host] = totalPower
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Window size for running average
|
||||
var Window_size = 10
|
||||
var WindowSize = 160
|
||||
|
||||
// Update the window size.
|
||||
func UpdateWindowSize(new_window_size int) bool {
|
||||
func UpdateWindowSize(newWindowSize int) bool {
|
||||
// Validation
|
||||
if new_window_size == 0 {
|
||||
if newWindowSize == 0 {
|
||||
return false
|
||||
} else {
|
||||
Window_size = new_window_size
|
||||
WindowSize = newWindowSize
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
|
14
def/task.go
14
def/task.go
|
@ -38,18 +38,18 @@ func TasksFromJSON(uri string) ([]Task, error) {
|
|||
}
|
||||
|
||||
// Update the host on which the task needs to be scheduled.
|
||||
func (tsk *Task) UpdateHost(new_host string) bool {
|
||||
func (tsk *Task) UpdateHost(newHost string) bool {
|
||||
// Validation
|
||||
is_correct_host := false
|
||||
for _, existing_host := range constants.Hosts {
|
||||
if new_host == existing_host {
|
||||
is_correct_host = true
|
||||
isCorrectHost := false
|
||||
for _, existingHost := range constants.Hosts {
|
||||
if newHost == existingHost {
|
||||
isCorrectHost = true
|
||||
}
|
||||
}
|
||||
if !is_correct_host {
|
||||
if !isCorrectHost {
|
||||
return false
|
||||
} else {
|
||||
tsk.Host = new_host
|
||||
tsk.Host = newHost
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
|
|
@ -24,63 +24,63 @@ import (
|
|||
// Structure containing utility data structures used to compute cluster-wide dynamic cap.
|
||||
type clusterwideCapper struct {
|
||||
// window of tasks.
|
||||
window_of_tasks list.List
|
||||
windowOfTasks list.List
|
||||
// The current sum of requested powers of the tasks in the window.
|
||||
current_sum float64
|
||||
currentSum float64
|
||||
// The current number of tasks in the window.
|
||||
number_of_tasks_in_window int
|
||||
numberOfTasksInWindow int
|
||||
}
|
||||
|
||||
// Defining constructor for clusterwideCapper. Please don't call this directly and instead use getClusterwideCapperInstance().
|
||||
func newClusterwideCapper() *clusterwideCapper {
|
||||
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
|
||||
return &clusterwideCapper{currentSum: 0.0, numberOfTasksInWindow: 0}
|
||||
}
|
||||
|
||||
// Singleton instance of clusterwideCapper
|
||||
var singleton_capper *clusterwideCapper
|
||||
var singletonCapper *clusterwideCapper
|
||||
|
||||
// Retrieve the singleton instance of clusterwideCapper.
|
||||
func getClusterwideCapperInstance() *clusterwideCapper {
|
||||
if singleton_capper == nil {
|
||||
singleton_capper = newClusterwideCapper()
|
||||
if singletonCapper == nil {
|
||||
singletonCapper = newClusterwideCapper()
|
||||
} else {
|
||||
// Do nothing
|
||||
}
|
||||
return singleton_capper
|
||||
return singletonCapper
|
||||
}
|
||||
|
||||
// Clear and initialize all the members of clusterwideCapper.
|
||||
func (capper clusterwideCapper) clear() {
|
||||
capper.window_of_tasks.Init()
|
||||
capper.current_sum = 0
|
||||
capper.number_of_tasks_in_window = 0
|
||||
capper.windowOfTasks.Init()
|
||||
capper.currentSum = 0
|
||||
capper.numberOfTasksInWindow = 0
|
||||
}
|
||||
|
||||
// Compute the average of watts of all the tasks in the window.
|
||||
func (capper clusterwideCapper) average() float64 {
|
||||
return capper.current_sum / float64(capper.window_of_tasks.Len())
|
||||
return capper.currentSum / float64(capper.windowOfTasks.Len())
|
||||
}
|
||||
|
||||
/*
|
||||
Compute the running average.
|
||||
|
||||
Using clusterwideCapper#window_of_tasks to store the tasks.
|
||||
Using clusterwideCapper#windowOfTasks to store the tasks.
|
||||
Task at position 0 (oldest task) is removed when the window is full and new task arrives.
|
||||
*/
|
||||
func (capper clusterwideCapper) running_average_of_watts(tsk *def.Task) float64 {
|
||||
func (capper clusterwideCapper) runningAverageOfWatts(tsk *def.Task) float64 {
|
||||
var average float64
|
||||
if capper.number_of_tasks_in_window < constants.Window_size {
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.number_of_tasks_in_window++
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
if capper.numberOfTasksInWindow < constants.WindowSize {
|
||||
capper.windowOfTasks.PushBack(tsk)
|
||||
capper.numberOfTasksInWindow++
|
||||
capper.currentSum += float64(tsk.Watts) * constants.CapMargin
|
||||
} else {
|
||||
task_to_remove_element := capper.window_of_tasks.Front()
|
||||
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
capper.window_of_tasks.Remove(task_to_remove_element)
|
||||
taskToRemoveElement := capper.windowOfTasks.Front()
|
||||
if taskToRemove, ok := taskToRemoveElement.Value.(*def.Task); ok {
|
||||
capper.currentSum -= float64(taskToRemove.Watts) * constants.CapMargin
|
||||
capper.windowOfTasks.Remove(taskToRemoveElement)
|
||||
}
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
capper.windowOfTasks.PushBack(tsk)
|
||||
capper.currentSum += float64(tsk.Watts) * constants.CapMargin
|
||||
}
|
||||
average = capper.average()
|
||||
return average
|
||||
|
@ -89,17 +89,17 @@ func (capper clusterwideCapper) running_average_of_watts(tsk *def.Task) float64
|
|||
/*
|
||||
Calculating cap value.
|
||||
|
||||
1. Sorting the values of running_average_to_total_power_percentage in ascending order.
|
||||
1. Sorting the values of runningAverageToTotalPowerPercentage in ascending order.
|
||||
2. Computing the median of above sorted values.
|
||||
3. The median is now the cap.
|
||||
*/
|
||||
func (capper clusterwideCapper) get_cap(running_average_to_total_power_percentage map[string]float64) float64 {
|
||||
func (capper clusterwideCapper) getCap(runningAverageToTotalPowerPercentage map[string]float64) float64 {
|
||||
var values []float64
|
||||
// Validation
|
||||
if running_average_to_total_power_percentage == nil {
|
||||
if runningAverageToTotalPowerPercentage == nil {
|
||||
return 100.0
|
||||
}
|
||||
for _, apower := range running_average_to_total_power_percentage {
|
||||
for _, apower := range runningAverageToTotalPowerPercentage {
|
||||
values = append(values, apower)
|
||||
}
|
||||
// sorting the values in ascending order.
|
||||
|
@ -122,51 +122,51 @@ The recap value picked the least among the two.
|
|||
The cleverRecap scheme works well when the cluster is relatively idle and until then,
|
||||
the primitive recapping scheme works better.
|
||||
*/
|
||||
func (capper clusterwideCapper) cleverRecap(total_power map[string]float64,
|
||||
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
|
||||
func (capper clusterwideCapper) cleverRecap(totalPower map[string]float64,
|
||||
taskMonitor map[string][]def.Task, finishedTaskId string) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil || task_monitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
|
||||
if totalPower == nil || taskMonitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: totalPower, taskMonitor")
|
||||
}
|
||||
|
||||
// determining the recap value by calling the regular recap(...)
|
||||
toggle := false
|
||||
recapValue, err := capper.recap(total_power, task_monitor, finished_taskId)
|
||||
recapValue, err := capper.recap(totalPower, taskMonitor, finishedTaskId)
|
||||
if err == nil {
|
||||
toggle = true
|
||||
}
|
||||
|
||||
// watts usage on each node in the cluster.
|
||||
watts_usages := make(map[string][]float64)
|
||||
host_of_finished_task := ""
|
||||
index_of_finished_task := -1
|
||||
wattsUsages := make(map[string][]float64)
|
||||
hostOfFinishedTask := ""
|
||||
indexOfFinishedTask := -1
|
||||
for _, host := range constants.Hosts {
|
||||
watts_usages[host] = []float64{0.0}
|
||||
wattsUsages[host] = []float64{0.0}
|
||||
}
|
||||
for host, tasks := range task_monitor {
|
||||
for host, tasks := range taskMonitor {
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finished_taskId {
|
||||
host_of_finished_task = host
|
||||
index_of_finished_task = i
|
||||
// Not considering this task for the computation of total_allocated_power and total_running_tasks
|
||||
if task.TaskID == finishedTaskId {
|
||||
hostOfFinishedTask = host
|
||||
indexOfFinishedTask = i
|
||||
// Not considering this task for the computation of totalAllocatedPower and totalRunningTasks
|
||||
continue
|
||||
}
|
||||
watts_usages[host] = append(watts_usages[host], float64(task.Watts)*constants.Cap_margin)
|
||||
wattsUsages[host] = append(wattsUsages[host], float64(task.Watts)*constants.CapMargin)
|
||||
}
|
||||
}
|
||||
|
||||
// Updating task monitor. If recap(...) has deleted the finished task from the taskMonitor,
|
||||
// then this will be ignored. Else (this is only when an error occured with recap(...)), we remove it here.
|
||||
if host_of_finished_task != "" && index_of_finished_task != -1 {
|
||||
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
|
||||
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||
task_monitor[host_of_finished_task][index_of_finished_task].TaskID)
|
||||
task_monitor[host_of_finished_task] = append(task_monitor[host_of_finished_task][:index_of_finished_task],
|
||||
task_monitor[host_of_finished_task][index_of_finished_task+1:]...)
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
|
||||
taskMonitor[hostOfFinishedTask] = append(taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
|
||||
}
|
||||
|
||||
// Need to check whether there are still tasks running on the cluster. If not then we return an error.
|
||||
clusterIdle := true
|
||||
for _, tasks := range task_monitor {
|
||||
for _, tasks := range taskMonitor {
|
||||
if len(tasks) > 0 {
|
||||
clusterIdle = false
|
||||
}
|
||||
|
@ -175,29 +175,29 @@ func (capper clusterwideCapper) cleverRecap(total_power map[string]float64,
|
|||
if !clusterIdle {
|
||||
// load on each node in the cluster.
|
||||
loads := []float64{0.0}
|
||||
for host, usages := range watts_usages {
|
||||
total_usage := 0.0
|
||||
for host, usages := range wattsUsages {
|
||||
totalUsage := 0.0
|
||||
for _, usage := range usages {
|
||||
total_usage += usage
|
||||
totalUsage += usage
|
||||
}
|
||||
loads = append(loads, total_usage/total_power[host])
|
||||
loads = append(loads, totalUsage/totalPower[host])
|
||||
}
|
||||
|
||||
// Now need to compute the average load.
|
||||
total_load := 0.0
|
||||
totalLoad := 0.0
|
||||
for _, load := range loads {
|
||||
total_load += load
|
||||
totalLoad += load
|
||||
}
|
||||
average_load := (total_load / float64(len(loads)) * 100.0) // this would be the cap value.
|
||||
averageLoad := (totalLoad / float64(len(loads)) * 100.0) // this would be the cap value.
|
||||
// If toggle is true, then we need to return the least recap value.
|
||||
if toggle {
|
||||
if average_load <= recapValue {
|
||||
return average_load, nil
|
||||
if averageLoad <= recapValue {
|
||||
return averageLoad, nil
|
||||
} else {
|
||||
return recapValue, nil
|
||||
}
|
||||
} else {
|
||||
return average_load, nil
|
||||
return averageLoad, nil
|
||||
}
|
||||
}
|
||||
return 100.0, errors.New("No task running on the cluster.")
|
||||
|
@ -213,46 +213,46 @@ Recapping the entire cluster.
|
|||
|
||||
This needs to be called whenever a task finishes execution.
|
||||
*/
|
||||
func (capper clusterwideCapper) recap(total_power map[string]float64,
|
||||
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
|
||||
func (capper clusterwideCapper) recap(totalPower map[string]float64,
|
||||
taskMonitor map[string][]def.Task, finishedTaskId string) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil || task_monitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
|
||||
if totalPower == nil || taskMonitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: totalPower, taskMonitor")
|
||||
}
|
||||
total_allocated_power := 0.0
|
||||
total_running_tasks := 0
|
||||
totalAllocatedPower := 0.0
|
||||
totalRunningTasks := 0
|
||||
|
||||
host_of_finished_task := ""
|
||||
index_of_finished_task := -1
|
||||
for host, tasks := range task_monitor {
|
||||
hostOfFinishedTask := ""
|
||||
indexOfFinishedTask := -1
|
||||
for host, tasks := range taskMonitor {
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finished_taskId {
|
||||
host_of_finished_task = host
|
||||
index_of_finished_task = i
|
||||
// Not considering this task for the computation of total_allocated_power and total_running_tasks
|
||||
if task.TaskID == finishedTaskId {
|
||||
hostOfFinishedTask = host
|
||||
indexOfFinishedTask = i
|
||||
// Not considering this task for the computation of totalAllocatedPower and totalRunningTasks
|
||||
continue
|
||||
}
|
||||
total_allocated_power += (float64(task.Watts) * constants.Cap_margin)
|
||||
total_running_tasks++
|
||||
totalAllocatedPower += (float64(task.Watts) * constants.CapMargin)
|
||||
totalRunningTasks++
|
||||
}
|
||||
}
|
||||
|
||||
// Updating task monitor
|
||||
if host_of_finished_task != "" && index_of_finished_task != -1 {
|
||||
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
|
||||
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||
task_monitor[host_of_finished_task][index_of_finished_task].TaskID)
|
||||
task_monitor[host_of_finished_task] = append(task_monitor[host_of_finished_task][:index_of_finished_task],
|
||||
task_monitor[host_of_finished_task][index_of_finished_task+1:]...)
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
|
||||
taskMonitor[hostOfFinishedTask] = append(taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
|
||||
}
|
||||
|
||||
// For the last task, total_allocated_power and total_running_tasks would be 0
|
||||
if total_allocated_power == 0 && total_running_tasks == 0 {
|
||||
// For the last task, totalAllocatedPower and totalRunningTasks would be 0
|
||||
if totalAllocatedPower == 0 && totalRunningTasks == 0 {
|
||||
return 100, errors.New("No task running on the cluster.")
|
||||
}
|
||||
|
||||
average := total_allocated_power / float64(total_running_tasks)
|
||||
average := totalAllocatedPower / float64(totalRunningTasks)
|
||||
ratios := []float64{}
|
||||
for _, tpower := range total_power {
|
||||
for _, tpower := range totalPower {
|
||||
ratios = append(ratios, (average/tpower)*100)
|
||||
}
|
||||
sort.Float64s(ratios)
|
||||
|
@ -265,38 +265,38 @@ func (capper clusterwideCapper) recap(total_power map[string]float64,
|
|||
}
|
||||
|
||||
/* Quick sort algorithm to sort tasks, in place, in ascending order of power.*/
|
||||
func (capper clusterwideCapper) quick_sort(low int, high int, tasks_to_sort *[]def.Task) {
|
||||
func (capper clusterwideCapper) quickSort(low int, high int, tasksToSort *[]def.Task) {
|
||||
i := low
|
||||
j := high
|
||||
// calculating the pivot
|
||||
pivot_index := low + (high-low)/2
|
||||
pivot := (*tasks_to_sort)[pivot_index]
|
||||
pivotIndex := low + (high-low)/2
|
||||
pivot := (*tasksToSort)[pivotIndex]
|
||||
for i <= j {
|
||||
for (*tasks_to_sort)[i].Watts < pivot.Watts {
|
||||
for (*tasksToSort)[i].Watts < pivot.Watts {
|
||||
i++
|
||||
}
|
||||
for (*tasks_to_sort)[j].Watts > pivot.Watts {
|
||||
for (*tasksToSort)[j].Watts > pivot.Watts {
|
||||
j--
|
||||
}
|
||||
if i <= j {
|
||||
temp := (*tasks_to_sort)[i]
|
||||
(*tasks_to_sort)[i] = (*tasks_to_sort)[j]
|
||||
(*tasks_to_sort)[j] = temp
|
||||
temp := (*tasksToSort)[i]
|
||||
(*tasksToSort)[i] = (*tasksToSort)[j]
|
||||
(*tasksToSort)[j] = temp
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
if low < j {
|
||||
capper.quick_sort(low, j, tasks_to_sort)
|
||||
capper.quickSort(low, j, tasksToSort)
|
||||
}
|
||||
if i < high {
|
||||
capper.quick_sort(i, high, tasks_to_sort)
|
||||
capper.quickSort(i, high, tasksToSort)
|
||||
}
|
||||
}
|
||||
|
||||
// Sorting tasks in ascending order of requested watts.
|
||||
func (capper clusterwideCapper) sort_tasks(tasks_to_sort *[]def.Task) {
|
||||
capper.quick_sort(0, len(*tasks_to_sort)-1, tasks_to_sort)
|
||||
func (capper clusterwideCapper) sortTasks(tasksToSort *[]def.Task) {
|
||||
capper.quickSort(0, len(*tasksToSort)-1, tasksToSort)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -307,51 +307,51 @@ This completed task needs to be removed from the window of tasks (if it is still
|
|||
*/
|
||||
func (capper clusterwideCapper) taskFinished(taskID string) {
|
||||
// If the window is empty the just return. This condition should technically return false.
|
||||
if capper.window_of_tasks.Len() == 0 {
|
||||
if capper.windowOfTasks.Len() == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Checking whether the task with the given taskID is currently present in the window of tasks.
|
||||
var task_element_to_remove *list.Element
|
||||
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
|
||||
if tsk, ok := task_element.Value.(*def.Task); ok {
|
||||
var taskElementToRemove *list.Element
|
||||
for taskElement := capper.windowOfTasks.Front(); taskElement != nil; taskElement = taskElement.Next() {
|
||||
if tsk, ok := taskElement.Value.(*def.Task); ok {
|
||||
if tsk.TaskID == taskID {
|
||||
task_element_to_remove = task_element
|
||||
taskElementToRemove = taskElement
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we need to remove the task from the window.
|
||||
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
||||
capper.window_of_tasks.Remove(task_element_to_remove)
|
||||
capper.number_of_tasks_in_window -= 1
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
if taskToRemove, ok := taskElementToRemove.Value.(*def.Task); ok {
|
||||
capper.windowOfTasks.Remove(taskElementToRemove)
|
||||
capper.numberOfTasksInWindow -= 1
|
||||
capper.currentSum -= float64(taskToRemove.Watts) * constants.CapMargin
|
||||
}
|
||||
}
|
||||
|
||||
// First come first serve scheduling.
|
||||
func (capper clusterwideCapper) fcfsDetermineCap(total_power map[string]float64,
|
||||
new_task *def.Task) (float64, error) {
|
||||
func (capper clusterwideCapper) fcfsDetermineCap(totalPower map[string]float64,
|
||||
newTask *def.Task) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil {
|
||||
return 100, errors.New("Invalid argument: total_power")
|
||||
if totalPower == nil {
|
||||
return 100, errors.New("Invalid argument: totalPower")
|
||||
} else {
|
||||
// Need to calculate the running average
|
||||
running_average := capper.running_average_of_watts(new_task)
|
||||
runningAverage := capper.runningAverageOfWatts(newTask)
|
||||
// For each node, calculate the percentage of the running average to the total power.
|
||||
running_average_to_total_power_percentage := make(map[string]float64)
|
||||
for host, tpower := range total_power {
|
||||
if tpower >= running_average {
|
||||
running_average_to_total_power_percentage[host] = (running_average / tpower) * 100
|
||||
runningAverageToTotalPowerPercentage := make(map[string]float64)
|
||||
for host, tpower := range totalPower {
|
||||
if tpower >= runningAverage {
|
||||
runningAverageToTotalPowerPercentage[host] = (runningAverage / tpower) * 100
|
||||
} else {
|
||||
// We don't consider this host for the computation of the cluster wide cap.
|
||||
}
|
||||
}
|
||||
|
||||
// Determine the cluster wide cap value.
|
||||
cap_value := capper.get_cap(running_average_to_total_power_percentage)
|
||||
capValue := capper.getCap(runningAverageToTotalPowerPercentage)
|
||||
// Need to cap the cluster to this value.
|
||||
return cap_value, nil
|
||||
return capValue, nil
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -304,8 +304,8 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
|||
log.Println(err)
|
||||
}
|
||||
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
||||
toSchedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, toSchedule, defaultFilter)
|
||||
log.Printf("Inst: %d", *task.Instances)
|
||||
*task.Instances--
|
||||
if *task.Instances <= 0 {
|
||||
|
|
|
@ -257,7 +257,7 @@ func (s *ProactiveClusterwideCapRanked) ResouceOffers(driver sched.SchedulerDriv
|
|||
}
|
||||
|
||||
// sorting the tasks in ascending order of watts.
|
||||
s.capper.sort_tasks(&s.tasks)
|
||||
s.capper.sortTasks(&s.tasks)
|
||||
// displaying the ranked tasks.
|
||||
log.Println("The ranked tasks are:\n---------------------\n\t[")
|
||||
for rank, task := range s.tasks {
|
||||
|
|
|
@ -37,11 +37,11 @@ func OrderedKeys(plist PairList) ([]string, error) {
|
|||
if plist == nil {
|
||||
return nil, errors.New("Invalid argument: plist")
|
||||
}
|
||||
ordered_keys := make([]string, len(plist))
|
||||
orderedKeys := make([]string, len(plist))
|
||||
for _, pair := range plist {
|
||||
ordered_keys = append(ordered_keys, pair.Key)
|
||||
orderedKeys = append(orderedKeys, pair.Key)
|
||||
}
|
||||
return ordered_keys, nil
|
||||
return orderedKeys, nil
|
||||
}
|
||||
|
||||
// determine the max value
|
||||
|
|
Reference in a new issue