commit
620c81466c
16 changed files with 1417 additions and 17 deletions
14
README.md
14
README.md
|
@ -5,19 +5,21 @@ To Do:
|
|||
|
||||
* Create metrics for each task launched [Time to schedule, run time, power used]
|
||||
* Have calibration phase?
|
||||
* Add ability to use constraints
|
||||
* Add ability to use constraints
|
||||
* Running average calculations https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
|
||||
|
||||
|
||||
* Make parameters corresponding to each scheduler configurable (possible to have a config template for each scheduler?)
|
||||
|
||||
**Requires Performance-Copilot tool pmdumptext to be installed on the
|
||||
machine on which electron is launched for logging to work**
|
||||
|
||||
|
||||
How to run (Use the --help option to get information about other command-line options):
|
||||
|
||||
How to run:
|
||||
`./electron -workload <workload json>`
|
||||
|
||||
`./electron -workload <workload.json> -ignoreWatts <true or false>`
|
||||
To run electron with ignoreWatts, run the following command,
|
||||
|
||||
`./electron -workload <workload json> -ignoreWatts`
|
||||
|
||||
|
||||
Workload schema:
|
||||
|
@ -43,4 +45,4 @@ Workload schema:
|
|||
"inst": 9
|
||||
}
|
||||
]
|
||||
```
|
||||
```
|
||||
|
|
82
constants/constants.go
Normal file
82
constants/constants.go
Normal file
|
@ -0,0 +1,82 @@
|
|||
/*
|
||||
Constants that are used across scripts
|
||||
1. The available hosts = stratos-00x (x varies from 1 to 8)
|
||||
2. cap_margin = percentage of the requested power to allocate
|
||||
3. power_threshold = overloading factor
|
||||
5. window_size = number of tasks to consider for computation of the dynamic cap.
|
||||
|
||||
Also, exposing functions to update or initialize some of the constants.
|
||||
*/
|
||||
package constants
|
||||
|
||||
var Hosts = []string{"stratos-001.cs.binghamton.edu", "stratos-002.cs.binghamton.edu",
|
||||
"stratos-003.cs.binghamton.edu", "stratos-004.cs.binghamton.edu",
|
||||
"stratos-005.cs.binghamton.edu", "stratos-006.cs.binghamton.edu",
|
||||
"stratos-007.cs.binghamton.edu", "stratos-008.cs.binghamton.edu"}
|
||||
|
||||
// Add a new host to the slice of hosts.
|
||||
func AddNewHost(newHost string) bool {
|
||||
// Validation
|
||||
if newHost == "" {
|
||||
return false
|
||||
} else {
|
||||
Hosts = append(Hosts, newHost)
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Lower bound of the percentage of requested power, that can be allocated to a task.
|
||||
|
||||
Note: This constant is not used for the proactive cluster wide capping schemes.
|
||||
*/
|
||||
var PowerThreshold = 0.6 // Right now saying that a task will never be given lesser than 60% of the power it requested.
|
||||
|
||||
/*
|
||||
Margin with respect to the required power for a job.
|
||||
So, if power required = 10W, the node would be capped to 75%*10W.
|
||||
This value can be changed upon convenience.
|
||||
*/
|
||||
var CapMargin = 0.70
|
||||
|
||||
// Modify the cap margin.
|
||||
func UpdateCapMargin(newCapMargin float64) bool {
|
||||
// Checking if the new_cap_margin is less than the power threshold.
|
||||
if newCapMargin < StarvationFactor {
|
||||
return false
|
||||
} else {
|
||||
CapMargin = newCapMargin
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
The factor, that when multiplied with (task.Watts * CapMargin) results in (task.Watts * PowerThreshold).
|
||||
This is used to check whether available power, for a host in an offer, is not less than (PowerThreshold * task.Watts),
|
||||
which is assumed to result in starvation of the task.
|
||||
Here is an example,
|
||||
Suppose a task requires 100W of power. Assuming CapMargin = 0.75 and PowerThreshold = 0.6.
|
||||
So, the assumed allocated watts is 75W.
|
||||
Now, when we get an offer, we need to check whether the available power, for the host in that offer, is
|
||||
not less than 60% (the PowerTreshold) of the requested power (100W).
|
||||
To put it in other words,
|
||||
availablePower >= 100W * 0.75 * X
|
||||
where X is the StarvationFactor (80% in this case)
|
||||
|
||||
Note: This constant is not used for the proactive cluster wide capping schemes.
|
||||
*/
|
||||
var StarvationFactor = PowerThreshold / CapMargin
|
||||
|
||||
// Window size for running average
|
||||
var WindowSize = 160
|
||||
|
||||
// Update the window size.
|
||||
func UpdateWindowSize(newWindowSize int) bool {
|
||||
// Validation
|
||||
if newWindowSize == 0 {
|
||||
return false
|
||||
} else {
|
||||
WindowSize = newWindowSize
|
||||
return true
|
||||
}
|
||||
}
|
43
def/task.go
43
def/task.go
|
@ -1,6 +1,7 @@
|
|||
package def
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"encoding/json"
|
||||
"github.com/pkg/errors"
|
||||
"os"
|
||||
|
@ -15,6 +16,7 @@ type Task struct {
|
|||
CMD string `json:"cmd"`
|
||||
Instances *int `json:"inst"`
|
||||
Host string `json:"host"`
|
||||
TaskID string `json:"taskID"`
|
||||
}
|
||||
|
||||
func TasksFromJSON(uri string) ([]Task, error) {
|
||||
|
@ -34,6 +36,34 @@ func TasksFromJSON(uri string) ([]Task, error) {
|
|||
return tasks, nil
|
||||
}
|
||||
|
||||
// Update the host on which the task needs to be scheduled.
|
||||
func (tsk *Task) UpdateHost(newHost string) bool {
|
||||
// Validation
|
||||
isCorrectHost := false
|
||||
for _, existingHost := range constants.Hosts {
|
||||
if newHost == existingHost {
|
||||
isCorrectHost = true
|
||||
}
|
||||
}
|
||||
if !isCorrectHost {
|
||||
return false
|
||||
} else {
|
||||
tsk.Host = newHost
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
// Set the taskID of the task.
|
||||
func (tsk *Task) SetTaskID(taskID string) bool {
|
||||
// Validation
|
||||
if taskID == "" {
|
||||
return false
|
||||
} else {
|
||||
tsk.TaskID = taskID
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
type WattsSorter []Task
|
||||
|
||||
func (slice WattsSorter) Len() int {
|
||||
|
@ -47,3 +77,16 @@ func (slice WattsSorter) Less(i, j int) bool {
|
|||
func (slice WattsSorter) Swap(i, j int) {
|
||||
slice[i], slice[j] = slice[j], slice[i]
|
||||
}
|
||||
|
||||
// Compare two tasks.
|
||||
func Compare(task1 *Task, task2 *Task) bool {
|
||||
// If comparing the same pointers (checking the addresses).
|
||||
if task1 == task2 {
|
||||
return true
|
||||
}
|
||||
if task1.TaskID != task2.TaskID {
|
||||
return false
|
||||
} else {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
package pcp
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/rapl"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"bufio"
|
||||
"container/ring"
|
||||
"log"
|
||||
|
|
|
@ -19,6 +19,7 @@ func Start(quit chan struct{}, logging *bool, prefix string) {
|
|||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
log.Println("Writing pcp logs to file: " + logFile.Name())
|
||||
|
||||
defer logFile.Close()
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@ func Cap(host, username string, percentage int) error {
|
|||
}
|
||||
|
||||
session, err := connection.NewSession()
|
||||
defer session.Close()
|
||||
if err != nil {
|
||||
return errors.Wrap(err, "Failed to create session")
|
||||
}
|
||||
|
|
12
scheduler.go
12
scheduler.go
|
@ -1,9 +1,9 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/def"
|
||||
"bitbucket.org/bingcloud/electron/pcp"
|
||||
"bitbucket.org/bingcloud/electron/schedulers"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/schedulers"
|
||||
"bitbucket.org/sunybingcloud/electron/pcp"
|
||||
"flag"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
|
@ -56,7 +56,7 @@ func main() {
|
|||
fmt.Println(task)
|
||||
}
|
||||
|
||||
scheduler := schedulers.NewFirstFit(tasks, *ignoreWatts)
|
||||
scheduler := schedulers.NewProactiveClusterwideCapRanked(tasks, *ignoreWatts)
|
||||
driver, err := sched.NewMesosSchedulerDriver(sched.DriverConfig{
|
||||
Master: *master,
|
||||
Framework: &mesos.FrameworkInfo{
|
||||
|
@ -70,8 +70,8 @@ func main() {
|
|||
return
|
||||
}
|
||||
|
||||
//go pcp.Start(scheduler.PCPLog, &scheduler.RecordPCP, *pcplogPrefix)
|
||||
go pcp.StartLogAndDynamicCap(scheduler.PCPLog, &scheduler.RecordPCP, *pcplogPrefix, *hiThreshold, *loThreshold)
|
||||
go pcp.Start(scheduler.PCPLog, &scheduler.RecordPCP, *pcplogPrefix)
|
||||
//go pcp.StartLogAndDynamicCap(scheduler.PCPLog, &scheduler.RecordPCP, *pcplogPrefix, *hiThreshold, *loThreshold)
|
||||
time.Sleep(1 * time.Second)
|
||||
|
||||
// Attempt to handle signint to not leave pmdumptext running
|
||||
|
|
15
schedulers/README.md
Normal file
15
schedulers/README.md
Normal file
|
@ -0,0 +1,15 @@
|
|||
Electron: Scheduling Algorithms
|
||||
================================
|
||||
|
||||
To Do:
|
||||
|
||||
* Design changes -- Possible to have one scheduler with different scheduling schemes?
|
||||
* Make the running average calculation generic, so that schedulers in the future can use it and not implement their own.
|
||||
|
||||
Scheduling Algorithms:
|
||||
|
||||
* Bin-packing with sorted watts
|
||||
* FCFS Proactive Cluster-wide Capping
|
||||
* Ranked Proactive Cluster-wide Capping
|
||||
* First Fit
|
||||
* First Fit with sorted watts
|
|
@ -1,7 +1,7 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/bingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
|
|
361
schedulers/proactiveclusterwidecappers.go
Normal file
361
schedulers/proactiveclusterwidecappers.go
Normal file
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
Cluster wide dynamic capping
|
||||
Step1. Compute the running average of watts of tasks in window.
|
||||
Step2. Compute what percentage of total power of each node, is the running average.
|
||||
Step3. Compute the median of the percetages and this is the percentage that the cluster needs to be capped at.
|
||||
|
||||
1. First fit scheduling -- Perform the above steps for each task that needs to be scheduled.
|
||||
2. Ranked based scheduling -- Sort the tasks to be scheduled, in ascending order, and then determine the cluster wide cap.
|
||||
|
||||
This is not a scheduler but a scheduling scheme that schedulers can use.
|
||||
*/
|
||||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"container/list"
|
||||
"errors"
|
||||
"github.com/montanaflynn/stats"
|
||||
"log"
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Structure containing utility data structures used to compute cluster-wide dynamic cap.
|
||||
type clusterwideCapper struct {
|
||||
// window of tasks.
|
||||
windowOfTasks list.List
|
||||
// The current sum of requested powers of the tasks in the window.
|
||||
currentSum float64
|
||||
// The current number of tasks in the window.
|
||||
numberOfTasksInWindow int
|
||||
}
|
||||
|
||||
// Defining constructor for clusterwideCapper. Please don't call this directly and instead use getClusterwideCapperInstance().
|
||||
func newClusterwideCapper() *clusterwideCapper {
|
||||
return &clusterwideCapper{currentSum: 0.0, numberOfTasksInWindow: 0}
|
||||
}
|
||||
|
||||
// Singleton instance of clusterwideCapper
|
||||
var singletonCapper *clusterwideCapper
|
||||
|
||||
// Retrieve the singleton instance of clusterwideCapper.
|
||||
func getClusterwideCapperInstance() *clusterwideCapper {
|
||||
if singletonCapper == nil {
|
||||
singletonCapper = newClusterwideCapper()
|
||||
} else {
|
||||
// Do nothing
|
||||
}
|
||||
return singletonCapper
|
||||
}
|
||||
|
||||
// Clear and initialize all the members of clusterwideCapper.
|
||||
func (capper clusterwideCapper) clear() {
|
||||
capper.windowOfTasks.Init()
|
||||
capper.currentSum = 0
|
||||
capper.numberOfTasksInWindow = 0
|
||||
}
|
||||
|
||||
// Compute the average of watts of all the tasks in the window.
|
||||
func (capper clusterwideCapper) average() float64 {
|
||||
return capper.currentSum / float64(capper.windowOfTasks.Len())
|
||||
}
|
||||
|
||||
/*
|
||||
Compute the running average.
|
||||
|
||||
Using clusterwideCapper#windowOfTasks to store the tasks.
|
||||
Task at position 0 (oldest task) is removed when the window is full and new task arrives.
|
||||
*/
|
||||
func (capper clusterwideCapper) runningAverageOfWatts(tsk *def.Task) float64 {
|
||||
var average float64
|
||||
if capper.numberOfTasksInWindow < constants.WindowSize {
|
||||
capper.windowOfTasks.PushBack(tsk)
|
||||
capper.numberOfTasksInWindow++
|
||||
capper.currentSum += float64(tsk.Watts) * constants.CapMargin
|
||||
} else {
|
||||
taskToRemoveElement := capper.windowOfTasks.Front()
|
||||
if taskToRemove, ok := taskToRemoveElement.Value.(*def.Task); ok {
|
||||
capper.currentSum -= float64(taskToRemove.Watts) * constants.CapMargin
|
||||
capper.windowOfTasks.Remove(taskToRemoveElement)
|
||||
}
|
||||
capper.windowOfTasks.PushBack(tsk)
|
||||
capper.currentSum += float64(tsk.Watts) * constants.CapMargin
|
||||
}
|
||||
average = capper.average()
|
||||
return average
|
||||
}
|
||||
|
||||
/*
|
||||
Calculating cap value.
|
||||
|
||||
1. Sorting the values of runningAverageToTotalPowerPercentage in ascending order.
|
||||
2. Computing the median of above sorted values.
|
||||
3. The median is now the cap.
|
||||
*/
|
||||
func (capper clusterwideCapper) getCap(runningAverageToTotalPowerPercentage map[string]float64) float64 {
|
||||
var values []float64
|
||||
// Validation
|
||||
if runningAverageToTotalPowerPercentage == nil {
|
||||
return 100.0
|
||||
}
|
||||
for _, apower := range runningAverageToTotalPowerPercentage {
|
||||
values = append(values, apower)
|
||||
}
|
||||
// sorting the values in ascending order.
|
||||
sort.Float64s(values)
|
||||
// Calculating the median
|
||||
if median, err := stats.Median(values); err == nil {
|
||||
return median
|
||||
}
|
||||
// should never reach here. If here, then just setting the cap value to be 100
|
||||
return 100.0
|
||||
}
|
||||
|
||||
/*
|
||||
A recapping strategy which decides between 2 different recapping schemes.
|
||||
1. the regular scheme based on the average power usage across the cluster.
|
||||
2. A scheme based on the average of the loads on each node in the cluster.
|
||||
|
||||
The recap value picked the least among the two.
|
||||
|
||||
The cleverRecap scheme works well when the cluster is relatively idle and until then,
|
||||
the primitive recapping scheme works better.
|
||||
*/
|
||||
func (capper clusterwideCapper) cleverRecap(totalPower map[string]float64,
|
||||
taskMonitor map[string][]def.Task, finishedTaskId string) (float64, error) {
|
||||
// Validation
|
||||
if totalPower == nil || taskMonitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: totalPower, taskMonitor")
|
||||
}
|
||||
|
||||
// determining the recap value by calling the regular recap(...)
|
||||
toggle := false
|
||||
recapValue, err := capper.recap(totalPower, taskMonitor, finishedTaskId)
|
||||
if err == nil {
|
||||
toggle = true
|
||||
}
|
||||
|
||||
// watts usage on each node in the cluster.
|
||||
wattsUsages := make(map[string][]float64)
|
||||
hostOfFinishedTask := ""
|
||||
indexOfFinishedTask := -1
|
||||
for _, host := range constants.Hosts {
|
||||
wattsUsages[host] = []float64{0.0}
|
||||
}
|
||||
for host, tasks := range taskMonitor {
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finishedTaskId {
|
||||
hostOfFinishedTask = host
|
||||
indexOfFinishedTask = i
|
||||
// Not considering this task for the computation of totalAllocatedPower and totalRunningTasks
|
||||
continue
|
||||
}
|
||||
wattsUsages[host] = append(wattsUsages[host], float64(task.Watts)*constants.CapMargin)
|
||||
}
|
||||
}
|
||||
|
||||
// Updating task monitor. If recap(...) has deleted the finished task from the taskMonitor,
|
||||
// then this will be ignored. Else (this is only when an error occured with recap(...)), we remove it here.
|
||||
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
|
||||
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
|
||||
taskMonitor[hostOfFinishedTask] = append(taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
|
||||
}
|
||||
|
||||
// Need to check whether there are still tasks running on the cluster. If not then we return an error.
|
||||
clusterIdle := true
|
||||
for _, tasks := range taskMonitor {
|
||||
if len(tasks) > 0 {
|
||||
clusterIdle = false
|
||||
}
|
||||
}
|
||||
|
||||
if !clusterIdle {
|
||||
// load on each node in the cluster.
|
||||
loads := []float64{0.0}
|
||||
for host, usages := range wattsUsages {
|
||||
totalUsage := 0.0
|
||||
for _, usage := range usages {
|
||||
totalUsage += usage
|
||||
}
|
||||
loads = append(loads, totalUsage/totalPower[host])
|
||||
}
|
||||
|
||||
// Now need to compute the average load.
|
||||
totalLoad := 0.0
|
||||
for _, load := range loads {
|
||||
totalLoad += load
|
||||
}
|
||||
averageLoad := (totalLoad / float64(len(loads)) * 100.0) // this would be the cap value.
|
||||
// If toggle is true, then we need to return the least recap value.
|
||||
if toggle {
|
||||
if averageLoad <= recapValue {
|
||||
return averageLoad, nil
|
||||
} else {
|
||||
return recapValue, nil
|
||||
}
|
||||
} else {
|
||||
return averageLoad, nil
|
||||
}
|
||||
}
|
||||
return 100.0, errors.New("No task running on the cluster.")
|
||||
}
|
||||
|
||||
/*
|
||||
Recapping the entire cluster.
|
||||
|
||||
1. Remove the task that finished from the list of running tasks.
|
||||
2. Compute the average allocated power of each of the tasks that are currently running.
|
||||
3. For each host, determine the ratio of the average to the total power.
|
||||
4. Determine the median of the ratios and this would be the new cluster wide cap.
|
||||
|
||||
This needs to be called whenever a task finishes execution.
|
||||
*/
|
||||
func (capper clusterwideCapper) recap(totalPower map[string]float64,
|
||||
taskMonitor map[string][]def.Task, finishedTaskId string) (float64, error) {
|
||||
// Validation
|
||||
if totalPower == nil || taskMonitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: totalPower, taskMonitor")
|
||||
}
|
||||
totalAllocatedPower := 0.0
|
||||
totalRunningTasks := 0
|
||||
|
||||
hostOfFinishedTask := ""
|
||||
indexOfFinishedTask := -1
|
||||
for host, tasks := range taskMonitor {
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finishedTaskId {
|
||||
hostOfFinishedTask = host
|
||||
indexOfFinishedTask = i
|
||||
// Not considering this task for the computation of totalAllocatedPower and totalRunningTasks
|
||||
continue
|
||||
}
|
||||
totalAllocatedPower += (float64(task.Watts) * constants.CapMargin)
|
||||
totalRunningTasks++
|
||||
}
|
||||
}
|
||||
|
||||
// Updating task monitor
|
||||
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
|
||||
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
|
||||
taskMonitor[hostOfFinishedTask] = append(taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
|
||||
taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
|
||||
}
|
||||
|
||||
// For the last task, totalAllocatedPower and totalRunningTasks would be 0
|
||||
if totalAllocatedPower == 0 && totalRunningTasks == 0 {
|
||||
return 100, errors.New("No task running on the cluster.")
|
||||
}
|
||||
|
||||
average := totalAllocatedPower / float64(totalRunningTasks)
|
||||
ratios := []float64{}
|
||||
for _, tpower := range totalPower {
|
||||
ratios = append(ratios, (average/tpower)*100)
|
||||
}
|
||||
sort.Float64s(ratios)
|
||||
median, err := stats.Median(ratios)
|
||||
if err == nil {
|
||||
return median, nil
|
||||
} else {
|
||||
return 100, err
|
||||
}
|
||||
}
|
||||
|
||||
/* Quick sort algorithm to sort tasks, in place, in ascending order of power.*/
|
||||
func (capper clusterwideCapper) quickSort(low int, high int, tasksToSort *[]def.Task) {
|
||||
i := low
|
||||
j := high
|
||||
// calculating the pivot
|
||||
pivotIndex := low + (high-low)/2
|
||||
pivot := (*tasksToSort)[pivotIndex]
|
||||
for i <= j {
|
||||
for (*tasksToSort)[i].Watts < pivot.Watts {
|
||||
i++
|
||||
}
|
||||
for (*tasksToSort)[j].Watts > pivot.Watts {
|
||||
j--
|
||||
}
|
||||
if i <= j {
|
||||
temp := (*tasksToSort)[i]
|
||||
(*tasksToSort)[i] = (*tasksToSort)[j]
|
||||
(*tasksToSort)[j] = temp
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
if low < j {
|
||||
capper.quickSort(low, j, tasksToSort)
|
||||
}
|
||||
if i < high {
|
||||
capper.quickSort(i, high, tasksToSort)
|
||||
}
|
||||
}
|
||||
|
||||
// Sorting tasks in ascending order of requested watts.
|
||||
func (capper clusterwideCapper) sortTasks(tasksToSort *[]def.Task) {
|
||||
capper.quickSort(0, len(*tasksToSort)-1, tasksToSort)
|
||||
}
|
||||
|
||||
/*
|
||||
Remove entry for finished task.
|
||||
This function is called when a task completes.
|
||||
This completed task needs to be removed from the window of tasks (if it is still present)
|
||||
so that it doesn't contribute to the computation of the cap value.
|
||||
*/
|
||||
func (capper clusterwideCapper) taskFinished(taskID string) {
|
||||
// If the window is empty the just return. This condition should technically return false.
|
||||
if capper.windowOfTasks.Len() == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Checking whether the task with the given taskID is currently present in the window of tasks.
|
||||
var taskElementToRemove *list.Element
|
||||
for taskElement := capper.windowOfTasks.Front(); taskElement != nil; taskElement = taskElement.Next() {
|
||||
if tsk, ok := taskElement.Value.(*def.Task); ok {
|
||||
if tsk.TaskID == taskID {
|
||||
taskElementToRemove = taskElement
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we need to remove the task from the window.
|
||||
if taskToRemove, ok := taskElementToRemove.Value.(*def.Task); ok {
|
||||
capper.windowOfTasks.Remove(taskElementToRemove)
|
||||
capper.numberOfTasksInWindow -= 1
|
||||
capper.currentSum -= float64(taskToRemove.Watts) * constants.CapMargin
|
||||
}
|
||||
}
|
||||
|
||||
// First come first serve scheduling.
|
||||
func (capper clusterwideCapper) fcfsDetermineCap(totalPower map[string]float64,
|
||||
newTask *def.Task) (float64, error) {
|
||||
// Validation
|
||||
if totalPower == nil {
|
||||
return 100, errors.New("Invalid argument: totalPower")
|
||||
} else {
|
||||
// Need to calculate the running average
|
||||
runningAverage := capper.runningAverageOfWatts(newTask)
|
||||
// For each node, calculate the percentage of the running average to the total power.
|
||||
runningAverageToTotalPowerPercentage := make(map[string]float64)
|
||||
for host, tpower := range totalPower {
|
||||
if tpower >= runningAverage {
|
||||
runningAverageToTotalPowerPercentage[host] = (runningAverage / tpower) * 100
|
||||
} else {
|
||||
// We don't consider this host for the computation of the cluster wide cap.
|
||||
}
|
||||
}
|
||||
|
||||
// Determine the cluster wide cap value.
|
||||
capValue := capper.getCap(runningAverageToTotalPowerPercentage)
|
||||
// Need to cap the cluster to this value.
|
||||
return capValue, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Stringer for an instance of clusterwideCapper
|
||||
func (capper clusterwideCapper) string() string {
|
||||
return "Cluster Capper -- Proactively cap the entire cluster."
|
||||
}
|
409
schedulers/proactiveclusterwidecappingfcfs.go
Normal file
409
schedulers/proactiveclusterwidecappingfcfs.go
Normal file
|
@ -0,0 +1,409 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
"github.com/mesos/mesos-go/mesosutil"
|
||||
sched "github.com/mesos/mesos-go/scheduler"
|
||||
"log"
|
||||
"math"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Decides if to take an offer or not
|
||||
func (_ *ProactiveClusterwideCapFCFS) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
||||
offer_cpu, offer_mem, offer_watts := OfferAgg(offer)
|
||||
|
||||
if offer_cpu >= task.CPU && offer_mem >= task.RAM && offer_watts >= task.Watts {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// electronScheduler implements the Scheduler interface.
|
||||
type ProactiveClusterwideCapFCFS struct {
|
||||
tasksCreated int
|
||||
tasksRunning int
|
||||
tasks []def.Task
|
||||
metrics map[string]def.Metric
|
||||
running map[string]map[string]bool
|
||||
taskMonitor map[string][]def.Task // store tasks that are currently running.
|
||||
availablePower map[string]float64 // available power for each node in the cluster.
|
||||
totalPower map[string]float64 // total power for each node in the cluster.
|
||||
ignoreWatts bool
|
||||
capper *clusterwideCapper
|
||||
ticker *time.Ticker
|
||||
recapTicker *time.Ticker
|
||||
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
||||
isRecapping bool // indicate whether we are currently performing cluster wide re-capping.
|
||||
|
||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||
// about to schedule the new task.
|
||||
RecordPCP bool
|
||||
|
||||
// This channel is closed when the program receives an interrupt,
|
||||
// signalling that the program should shut down.
|
||||
Shutdown chan struct{}
|
||||
|
||||
// This channel is closed after shutdown is closed, and only when all
|
||||
// outstanding tasks have been cleaned up.
|
||||
Done chan struct{}
|
||||
|
||||
// Controls when to shutdown pcp logging.
|
||||
PCPLog chan struct{}
|
||||
}
|
||||
|
||||
// New electron scheduler.
|
||||
func NewProactiveClusterwideCapFCFS(tasks []def.Task, ignoreWatts bool) *ProactiveClusterwideCapFCFS {
|
||||
s := &ProactiveClusterwideCapFCFS{
|
||||
tasks: tasks,
|
||||
ignoreWatts: ignoreWatts,
|
||||
Shutdown: make(chan struct{}),
|
||||
Done: make(chan struct{}),
|
||||
PCPLog: make(chan struct{}),
|
||||
running: make(map[string]map[string]bool),
|
||||
taskMonitor: make(map[string][]def.Task),
|
||||
availablePower: make(map[string]float64),
|
||||
totalPower: make(map[string]float64),
|
||||
RecordPCP: false,
|
||||
capper: getClusterwideCapperInstance(),
|
||||
ticker: time.NewTicker(10 * time.Second),
|
||||
recapTicker: time.NewTicker(20 * time.Second),
|
||||
isCapping: false,
|
||||
isRecapping: false,
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// mutex
|
||||
var fcfsMutex sync.Mutex
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||
s.tasksCreated++
|
||||
|
||||
if !s.RecordPCP {
|
||||
// Turn on logging.
|
||||
s.RecordPCP = true
|
||||
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
||||
}
|
||||
|
||||
// If this is our first time running into this Agent
|
||||
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
||||
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
||||
}
|
||||
|
||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||
// even though they have the same parameters.
|
||||
task.SetTaskID(*proto.String("electron-" + taskName))
|
||||
// Add task to the list of tasks running on the node.
|
||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||
if len(s.taskMonitor[*offer.Hostname]) == 0 {
|
||||
s.taskMonitor[*offer.Hostname] = []def.Task{task}
|
||||
} else {
|
||||
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
|
||||
}
|
||||
|
||||
resources := []*mesos.Resource{
|
||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||
mesosutil.NewScalarResource("mem", task.RAM),
|
||||
}
|
||||
|
||||
if !s.ignoreWatts {
|
||||
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
|
||||
}
|
||||
|
||||
return &mesos.TaskInfo{
|
||||
Name: proto.String(taskName),
|
||||
TaskId: &mesos.TaskID{
|
||||
Value: proto.String("electron-" + taskName),
|
||||
},
|
||||
SlaveId: offer.SlaveId,
|
||||
Resources: resources,
|
||||
Command: &mesos.CommandInfo{
|
||||
Value: proto.String(task.CMD),
|
||||
},
|
||||
Container: &mesos.ContainerInfo{
|
||||
Type: mesos.ContainerInfo_DOCKER.Enum(),
|
||||
Docker: &mesos.ContainerInfo_DockerInfo{
|
||||
Image: proto.String(task.Image),
|
||||
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Registered(
|
||||
_ sched.SchedulerDriver,
|
||||
frameworkID *mesos.FrameworkID,
|
||||
masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework %s registered with master %s", frameworkID, masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Reregistered(_ sched.SchedulerDriver, masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework re-registered with master %s", masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Disconnected(sched.SchedulerDriver) {
|
||||
// Need to stop the capping process.
|
||||
s.ticker.Stop()
|
||||
s.recapTicker.Stop()
|
||||
fcfsMutex.Lock()
|
||||
s.isCapping = false
|
||||
fcfsMutex.Unlock()
|
||||
log.Println("Framework disconnected with master")
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var fcfsCurrentCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
|
||||
func (s *ProactiveClusterwideCapFCFS) startCapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.ticker.C:
|
||||
// Need to cap the cluster to the fcfsCurrentCapValue.
|
||||
fcfsMutex.Lock()
|
||||
if fcfsCurrentCapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(fcfsCurrentCapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Capped the cluster to %d", int(math.Floor(fcfsCurrentCapValue+0.5)))
|
||||
}
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var fcfsRecapValue = 0.0 // The cluster wide cap value when recapping.
|
||||
func (s *ProactiveClusterwideCapFCFS) startRecapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.recapTicker.C:
|
||||
fcfsMutex.Lock()
|
||||
// If stopped performing cluster wide capping then we need to explicitly cap the entire cluster.
|
||||
if s.isRecapping && fcfsRecapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(fcfsRecapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Recapped the cluster to %d", int(math.Floor(fcfsRecapValue+0.5)))
|
||||
}
|
||||
// setting recapping to false
|
||||
s.isRecapping = false
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Stop cluster wide capping
|
||||
func (s *ProactiveClusterwideCapFCFS) stopCapping() {
|
||||
if s.isCapping {
|
||||
log.Println("Stopping the cluster wide capping.")
|
||||
s.ticker.Stop()
|
||||
fcfsMutex.Lock()
|
||||
s.isCapping = false
|
||||
s.isRecapping = true
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Stop cluster wide Recapping
|
||||
func (s *ProactiveClusterwideCapFCFS) stopRecapping() {
|
||||
// If not capping, then definitely recapping.
|
||||
if !s.isCapping && s.isRecapping {
|
||||
log.Println("Stopping the cluster wide re-capping.")
|
||||
s.recapTicker.Stop()
|
||||
fcfsMutex.Lock()
|
||||
s.isRecapping = false
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
|
||||
log.Printf("Received %d resource offers", len(offers))
|
||||
|
||||
// retrieving the available power for all the hosts in the offers.
|
||||
for _, offer := range offers {
|
||||
_, _, offer_watts := OfferAgg(offer)
|
||||
s.availablePower[*offer.Hostname] = offer_watts
|
||||
// setting total power if the first time.
|
||||
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
||||
s.totalPower[*offer.Hostname] = offer_watts
|
||||
}
|
||||
}
|
||||
|
||||
for host, tpower := range s.totalPower {
|
||||
log.Printf("TotalPower[%s] = %f", host, tpower)
|
||||
}
|
||||
|
||||
for _, offer := range offers {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
||||
driver.DeclineOffer(offer.Id, longFilter)
|
||||
|
||||
log.Println("Number of tasks still running: ", s.tasksRunning)
|
||||
continue
|
||||
default:
|
||||
}
|
||||
|
||||
/*
|
||||
Clusterwide Capping strategy
|
||||
|
||||
For each task in s.tasks,
|
||||
1. Need to check whether the offer can be taken or not (based on CPU and RAM requirements).
|
||||
2. If the tasks fits the offer, then I need to detemrine the cluster wide cap.
|
||||
3. fcfsCurrentCapValue is updated with the determined cluster wide cap.
|
||||
|
||||
Cluster wide capping is currently performed at regular intervals of time.
|
||||
*/
|
||||
taken := false
|
||||
|
||||
for i, task := range s.tasks {
|
||||
// Don't take offer if it doesn't match our task's host requirement.
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Does the task fit.
|
||||
if s.takeOffer(offer, task) {
|
||||
// Capping the cluster if haven't yet started,
|
||||
if !s.isCapping {
|
||||
fcfsMutex.Lock()
|
||||
s.isCapping = true
|
||||
fcfsMutex.Unlock()
|
||||
s.startCapping()
|
||||
}
|
||||
taken = true
|
||||
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
||||
|
||||
if err == nil {
|
||||
fcfsMutex.Lock()
|
||||
fcfsCurrentCapValue = tempCap
|
||||
fcfsMutex.Unlock()
|
||||
} else {
|
||||
log.Printf("Failed to determine new cluster wide cap: ")
|
||||
log.Println(err)
|
||||
}
|
||||
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
toSchedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, toSchedule, defaultFilter)
|
||||
log.Printf("Inst: %d", *task.Instances)
|
||||
*task.Instances--
|
||||
if *task.Instances <= 0 {
|
||||
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
||||
s.tasks[i] = s.tasks[len(s.tasks)-1]
|
||||
s.tasks = s.tasks[:len(s.tasks)-1]
|
||||
|
||||
if len(s.tasks) <= 0 {
|
||||
log.Println("Done scheduling all tasks")
|
||||
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
||||
s.stopCapping()
|
||||
s.startRecapping() // Load changes after every task finishes and hence we need to change the capping of the cluster.
|
||||
close(s.Shutdown)
|
||||
}
|
||||
}
|
||||
break // Offer taken, move on.
|
||||
} else {
|
||||
// Task doesn't fit the offer. Move onto the next offer.
|
||||
}
|
||||
}
|
||||
|
||||
// If no task fit the offer, then declining the offer.
|
||||
if !taken {
|
||||
log.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
|
||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||
driver.DeclineOffer(offer.Id, defaultFilter)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
||||
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
|
||||
|
||||
if *status.State == mesos.TaskState_TASK_RUNNING {
|
||||
fcfsMutex.Lock()
|
||||
s.tasksRunning++
|
||||
fcfsMutex.Unlock()
|
||||
} else if IsTerminal(status.State) {
|
||||
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
||||
// Need to remove the task from the window of tasks.
|
||||
s.capper.taskFinished(*status.TaskId.Value)
|
||||
// Determining the new cluster wide cap.
|
||||
//tempCap, err := s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
tempCap, err := s.capper.cleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
if err == nil {
|
||||
// if new determined cap value is different from the current recap value then we need to recap.
|
||||
if int(math.Floor(tempCap+0.5)) != int(math.Floor(fcfsRecapValue+0.5)) {
|
||||
fcfsRecapValue = tempCap
|
||||
fcfsMutex.Lock()
|
||||
s.isRecapping = true
|
||||
fcfsMutex.Unlock()
|
||||
log.Printf("Determined re-cap value: %f\n", fcfsRecapValue)
|
||||
} else {
|
||||
fcfsMutex.Lock()
|
||||
s.isRecapping = false
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
} else {
|
||||
// Not updating fcfsCurrentCapValue
|
||||
log.Println(err)
|
||||
}
|
||||
|
||||
fcfsMutex.Lock()
|
||||
s.tasksRunning--
|
||||
fcfsMutex.Unlock()
|
||||
if s.tasksRunning == 0 {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
// Need to stop the recapping process.
|
||||
s.stopRecapping()
|
||||
close(s.Done)
|
||||
default:
|
||||
}
|
||||
}
|
||||
}
|
||||
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) FrameworkMessage(driver sched.SchedulerDriver,
|
||||
executorID *mesos.ExecutorID,
|
||||
slaveID *mesos.SlaveID,
|
||||
message string) {
|
||||
|
||||
log.Println("Getting a framework message: ", message)
|
||||
log.Printf("Received a framework message from some unknown source: %s", *executorID.Value)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) OfferRescinded(_ sched.SchedulerDriver, offerID *mesos.OfferID) {
|
||||
log.Printf("Offer %s rescinded", offerID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) SlaveLost(_ sched.SchedulerDriver, slaveID *mesos.SlaveID) {
|
||||
log.Printf("Slave %s lost", slaveID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) ExecutorLost(_ sched.SchedulerDriver, executorID *mesos.ExecutorID, slaveID *mesos.SlaveID, status int) {
|
||||
log.Printf("Executor %s on slave %s was lost", executorID, slaveID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Error(_ sched.SchedulerDriver, err string) {
|
||||
log.Printf("Receiving an error: %s", err)
|
||||
}
|
432
schedulers/proactiveclusterwidecappingranked.go
Normal file
432
schedulers/proactiveclusterwidecappingranked.go
Normal file
|
@ -0,0 +1,432 @@
|
|||
/*
|
||||
Ranked based cluster wide capping.
|
||||
|
||||
Note: Sorting the tasks right in the beginning, in ascending order of watts.
|
||||
You are hence certain that the tasks that didn't fit are the ones that require more resources,
|
||||
and hence, you can find a way to address that issue.
|
||||
On the other hand, if you use first fit to fit the tasks and then sort them to determine the cap,
|
||||
you are never certain as which tasks are the ones that don't fit and hence, it becomes much harder
|
||||
to address this issue.
|
||||
*/
|
||||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
"github.com/mesos/mesos-go/mesosutil"
|
||||
sched "github.com/mesos/mesos-go/scheduler"
|
||||
"log"
|
||||
"math"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Decides if to taken an offer or not
|
||||
func (_ *ProactiveClusterwideCapRanked) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
||||
offer_cpu, offer_mem, offer_watts := OfferAgg(offer)
|
||||
|
||||
if offer_cpu >= task.CPU && offer_mem >= task.RAM && offer_watts >= task.Watts {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// electronScheduler implements the Scheduler interface
|
||||
type ProactiveClusterwideCapRanked struct {
|
||||
tasksCreated int
|
||||
tasksRunning int
|
||||
tasks []def.Task
|
||||
metrics map[string]def.Metric
|
||||
running map[string]map[string]bool
|
||||
taskMonitor map[string][]def.Task // store tasks that are currently running.
|
||||
availablePower map[string]float64 // available power for each node in the cluster.
|
||||
totalPower map[string]float64 // total power for each node in the cluster.
|
||||
ignoreWatts bool
|
||||
capper *clusterwideCapper
|
||||
ticker *time.Ticker
|
||||
recapTicker *time.Ticker
|
||||
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
||||
isRecapping bool // indicate whether we are currently performing cluster wide re-capping.
|
||||
|
||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||
// about to schedule the new task.
|
||||
RecordPCP bool
|
||||
|
||||
// This channel is closed when the program receives an interrupt,
|
||||
// signalling that the program should shut down.
|
||||
Shutdown chan struct{}
|
||||
|
||||
// This channel is closed after shutdown is closed, and only when all
|
||||
// outstanding tasks have been cleaned up.
|
||||
Done chan struct{}
|
||||
|
||||
// Controls when to shutdown pcp logging.
|
||||
PCPLog chan struct{}
|
||||
}
|
||||
|
||||
// New electron scheduler.
|
||||
func NewProactiveClusterwideCapRanked(tasks []def.Task, ignoreWatts bool) *ProactiveClusterwideCapRanked {
|
||||
s := &ProactiveClusterwideCapRanked{
|
||||
tasks: tasks,
|
||||
ignoreWatts: ignoreWatts,
|
||||
Shutdown: make(chan struct{}),
|
||||
Done: make(chan struct{}),
|
||||
PCPLog: make(chan struct{}),
|
||||
running: make(map[string]map[string]bool),
|
||||
taskMonitor: make(map[string][]def.Task),
|
||||
availablePower: make(map[string]float64),
|
||||
totalPower: make(map[string]float64),
|
||||
RecordPCP: false,
|
||||
capper: getClusterwideCapperInstance(),
|
||||
ticker: time.NewTicker(10 * time.Second),
|
||||
recapTicker: time.NewTicker(20 * time.Second),
|
||||
isCapping: false,
|
||||
isRecapping: false,
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// mutex
|
||||
var rankedMutex sync.Mutex
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||
s.tasksCreated++
|
||||
|
||||
if !s.RecordPCP {
|
||||
// Turn on logging.
|
||||
s.RecordPCP = true
|
||||
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
||||
}
|
||||
|
||||
// If this is our first time running into this Agent
|
||||
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
||||
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
||||
}
|
||||
|
||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||
// even though they have the same parameters.
|
||||
task.SetTaskID(*proto.String("electron-" + taskName))
|
||||
// Add task to the list of tasks running on the node.
|
||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||
if len(s.taskMonitor[*offer.Hostname]) == 0 {
|
||||
s.taskMonitor[*offer.Hostname] = []def.Task{task}
|
||||
} else {
|
||||
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
|
||||
}
|
||||
|
||||
resources := []*mesos.Resource{
|
||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||
mesosutil.NewScalarResource("mem", task.RAM),
|
||||
}
|
||||
|
||||
if !s.ignoreWatts {
|
||||
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
|
||||
}
|
||||
|
||||
return &mesos.TaskInfo{
|
||||
Name: proto.String(taskName),
|
||||
TaskId: &mesos.TaskID{
|
||||
Value: proto.String("electron-" + taskName),
|
||||
},
|
||||
SlaveId: offer.SlaveId,
|
||||
Resources: resources,
|
||||
Command: &mesos.CommandInfo{
|
||||
Value: proto.String(task.CMD),
|
||||
},
|
||||
Container: &mesos.ContainerInfo{
|
||||
Type: mesos.ContainerInfo_DOCKER.Enum(),
|
||||
Docker: &mesos.ContainerInfo_DockerInfo{
|
||||
Image: proto.String(task.Image),
|
||||
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) Registered(
|
||||
_ sched.SchedulerDriver,
|
||||
frameworkID *mesos.FrameworkID,
|
||||
masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework %s registered with master %s", frameworkID, masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) Reregistered(_ sched.SchedulerDriver, masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework re-registered with master %s", masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) Disconnected(sched.SchedulerDriver) {
|
||||
// Need to stop the capping process.
|
||||
s.ticker.Stop()
|
||||
s.recapTicker.Stop()
|
||||
rankedMutex.Lock()
|
||||
s.isCapping = false
|
||||
rankedMutex.Unlock()
|
||||
log.Println("Framework disconnected with master")
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var rankedCurrentCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
|
||||
func (s *ProactiveClusterwideCapRanked) startCapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.ticker.C:
|
||||
// Need to cap the cluster to the rankedCurrentCapValue.
|
||||
rankedMutex.Lock()
|
||||
if rankedCurrentCapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(rankedCurrentCapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Capped the cluster to %d", int(math.Floor(rankedCurrentCapValue+0.5)))
|
||||
}
|
||||
rankedMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var rankedRecapValue = 0.0 // The cluster wide cap value when recapping.
|
||||
func (s *ProactiveClusterwideCapRanked) startRecapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.recapTicker.C:
|
||||
rankedMutex.Lock()
|
||||
// If stopped performing cluster wide capping then we need to explicitly cap the entire cluster.
|
||||
if s.isRecapping && rankedRecapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(rankedRecapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Recapped the cluster to %d", int(math.Floor(rankedRecapValue+0.5)))
|
||||
}
|
||||
// setting recapping to false
|
||||
s.isRecapping = false
|
||||
rankedMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Stop cluster wide capping
|
||||
func (s *ProactiveClusterwideCapRanked) stopCapping() {
|
||||
if s.isCapping {
|
||||
log.Println("Stopping the cluster wide capping.")
|
||||
s.ticker.Stop()
|
||||
fcfsMutex.Lock()
|
||||
s.isCapping = false
|
||||
s.isRecapping = true
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Stop cluster wide Recapping
|
||||
func (s *ProactiveClusterwideCapRanked) stopRecapping() {
|
||||
// If not capping, then definitely recapping.
|
||||
if !s.isCapping && s.isRecapping {
|
||||
log.Println("Stopping the cluster wide re-capping.")
|
||||
s.recapTicker.Stop()
|
||||
fcfsMutex.Lock()
|
||||
s.isRecapping = false
|
||||
fcfsMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
|
||||
log.Printf("Received %d resource offers", len(offers))
|
||||
|
||||
// retrieving the available power for all the hosts in the offers.
|
||||
for _, offer := range offers {
|
||||
_, _, offer_watts := OfferAgg(offer)
|
||||
s.availablePower[*offer.Hostname] = offer_watts
|
||||
// setting total power if the first time.
|
||||
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
||||
s.totalPower[*offer.Hostname] = offer_watts
|
||||
}
|
||||
}
|
||||
|
||||
for host, tpower := range s.totalPower {
|
||||
log.Printf("TotalPower[%s] = %f", host, tpower)
|
||||
}
|
||||
|
||||
// sorting the tasks in ascending order of watts.
|
||||
if (len(s.tasks) > 0) {
|
||||
s.capper.sortTasks(&s.tasks)
|
||||
// calculating the total number of tasks ranked.
|
||||
numberOfRankedTasks := 0
|
||||
for _, task := range s.tasks {
|
||||
numberOfRankedTasks += *task.Instances
|
||||
}
|
||||
log.Printf("Ranked %d tasks in ascending order of tasks.", numberOfRankedTasks)
|
||||
}
|
||||
for _, offer := range offers {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
||||
driver.DeclineOffer(offer.Id, longFilter)
|
||||
|
||||
log.Println("Number of tasks still running: ", s.tasksRunning)
|
||||
continue
|
||||
default:
|
||||
}
|
||||
|
||||
/*
|
||||
Ranked cluster wide capping strategy
|
||||
|
||||
For each task in the sorted tasks,
|
||||
1. Need to check whether the offer can be taken or not (based on CPU, RAM and WATTS requirements).
|
||||
2. If the task fits the offer, then need to determine the cluster wide cap.'
|
||||
3. rankedCurrentCapValue is updated with the determined cluster wide cap.
|
||||
|
||||
Once we are done scheduling all the tasks,
|
||||
we start recalculating the cluster wide cap each time a task finishes.
|
||||
|
||||
Cluster wide capping is currently performed at regular intervals of time.
|
||||
*/
|
||||
taken := false
|
||||
|
||||
for i, task := range s.tasks {
|
||||
// Don't take offer if it doesn't match our task's host requirement.
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Does the task fit.
|
||||
if s.takeOffer(offer, task) {
|
||||
// Capping the cluster if haven't yet started
|
||||
if !s.isCapping {
|
||||
rankedMutex.Lock()
|
||||
s.isCapping = true
|
||||
rankedMutex.Unlock()
|
||||
s.startCapping()
|
||||
}
|
||||
taken = true
|
||||
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
||||
|
||||
if err == nil {
|
||||
rankedMutex.Lock()
|
||||
rankedCurrentCapValue = tempCap
|
||||
rankedMutex.Unlock()
|
||||
} else {
|
||||
log.Println("Failed to determine the new cluster wide cap: ", err)
|
||||
}
|
||||
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
||||
log.Printf("Inst: %d", *task.Instances)
|
||||
*task.Instances--
|
||||
if *task.Instances <= 0 {
|
||||
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
||||
s.tasks[i] = s.tasks[len(s.tasks)-1]
|
||||
s.tasks = s.tasks[:len(s.tasks)-1]
|
||||
|
||||
if len(s.tasks) <= 0 {
|
||||
log.Println("Done scheduling all tasks")
|
||||
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
||||
s.stopCapping()
|
||||
s.startRecapping()
|
||||
close(s.Shutdown)
|
||||
}
|
||||
}
|
||||
break // Offer taken, move on.
|
||||
} else {
|
||||
// Task doesn't fit the offer. Move onto the next offer.
|
||||
}
|
||||
}
|
||||
|
||||
// If no tasks fit the offer, then declining the offer.
|
||||
if !taken {
|
||||
log.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
|
||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||
driver.DeclineOffer(offer.Id, defaultFilter)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
||||
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
|
||||
|
||||
if *status.State == mesos.TaskState_TASK_RUNNING {
|
||||
rankedMutex.Lock()
|
||||
s.tasksRunning++
|
||||
rankedMutex.Unlock()
|
||||
} else if IsTerminal(status.State) {
|
||||
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
||||
rankedMutex.Lock()
|
||||
s.tasksRunning--
|
||||
rankedMutex.Unlock()
|
||||
if s.tasksRunning == 0 {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
// Need to stop the recapping process.
|
||||
s.stopRecapping()
|
||||
close(s.Done)
|
||||
default:
|
||||
}
|
||||
} else {
|
||||
// Need to remove the task from the window
|
||||
s.capper.taskFinished(*status.TaskId.Value)
|
||||
// Determining the new cluster wide cap.
|
||||
//tempCap, err := s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
tempCap, err := s.capper.cleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
|
||||
if err == nil {
|
||||
// If new determined cap value is different from the current recap value then we need to recap.
|
||||
if int(math.Floor(tempCap+0.5)) != int(math.Floor(rankedRecapValue+0.5)) {
|
||||
rankedRecapValue = tempCap
|
||||
rankedMutex.Lock()
|
||||
s.isRecapping = true
|
||||
rankedMutex.Unlock()
|
||||
log.Printf("Determined re-cap value: %f\n", rankedRecapValue)
|
||||
} else {
|
||||
rankedMutex.Lock()
|
||||
s.isRecapping = false
|
||||
rankedMutex.Unlock()
|
||||
}
|
||||
} else {
|
||||
// Not updating rankedCurrentCapValue
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
}
|
||||
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) FrameworkMessage(driver sched.SchedulerDriver,
|
||||
executorID *mesos.ExecutorID,
|
||||
slaveID *mesos.SlaveID,
|
||||
message string) {
|
||||
|
||||
log.Println("Getting a framework message: ", message)
|
||||
log.Printf("Received a framework message from some unknown source: %s", *executorID.Value)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) OfferRescinded(_ sched.SchedulerDriver, offerID *mesos.OfferID) {
|
||||
log.Printf("Offer %s rescinded", offerID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) SlaveLost(_ sched.SchedulerDriver, slaveID *mesos.SlaveID) {
|
||||
log.Printf("Slave %s lost", slaveID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) ExecutorLost(_ sched.SchedulerDriver, executorID *mesos.ExecutorID, slaveID *mesos.SlaveID, status int) {
|
||||
log.Printf("Executor %s on slave %s was lost", executorID, slaveID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapRanked) Error(_ sched.SchedulerDriver, err string) {
|
||||
log.Printf("Receiving an error: %s", err)
|
||||
}
|
54
utilities/utils.go
Normal file
54
utilities/utils.go
Normal file
|
@ -0,0 +1,54 @@
|
|||
package utilities
|
||||
|
||||
import "errors"
|
||||
|
||||
/*
|
||||
The Pair and PairList have been taken from google groups forum,
|
||||
https://groups.google.com/forum/#!topic/golang-nuts/FT7cjmcL7gw
|
||||
*/
|
||||
|
||||
// Utility struct that helps in sorting the available power by value.
|
||||
type Pair struct {
|
||||
Key string
|
||||
Value float64
|
||||
}
|
||||
|
||||
// A slice of pairs that implements the sort.Interface to sort by value.
|
||||
type PairList []Pair
|
||||
|
||||
// Swap pairs in the PairList
|
||||
func (plist PairList) Swap(i, j int) {
|
||||
plist[i], plist[j] = plist[j], plist[i]
|
||||
}
|
||||
|
||||
// function to return the length of the pairlist.
|
||||
func (plist PairList) Len() int {
|
||||
return len(plist)
|
||||
}
|
||||
|
||||
// function to compare two elements in pairlist.
|
||||
func (plist PairList) Less(i, j int) bool {
|
||||
return plist[i].Value < plist[j].Value
|
||||
}
|
||||
|
||||
// convert a PairList to a map[string]float64
|
||||
func OrderedKeys(plist PairList) ([]string, error) {
|
||||
// Validation
|
||||
if plist == nil {
|
||||
return nil, errors.New("Invalid argument: plist")
|
||||
}
|
||||
orderedKeys := make([]string, len(plist))
|
||||
for _, pair := range plist {
|
||||
orderedKeys = append(orderedKeys, pair.Key)
|
||||
}
|
||||
return orderedKeys, nil
|
||||
}
|
||||
|
||||
// determine the max value
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
} else {
|
||||
return b
|
||||
}
|
||||
}
|
Reference in a new issue