BinPackedMaxMin scheduler with Proactive cluster wide capping
This commit is contained in:
parent
154bacdf7f
commit
757684d3a4
1 changed files with 440 additions and 0 deletions
440
schedulers/bpMaxMinProacCC.go
Normal file
440
schedulers/bpMaxMinProacCC.go
Normal file
|
@ -0,0 +1,440 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/pcp"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
"github.com/mesos/mesos-go/mesosutil"
|
||||
sched "github.com/mesos/mesos-go/scheduler"
|
||||
"log"
|
||||
"os"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"math"
|
||||
)
|
||||
|
||||
// Decides if to take an offer or not
|
||||
func (s *BPMaxMinProacCC) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
|
||||
//TODO: Insert watts calculation here instead of taking them as a parameter
|
||||
|
||||
if cpus >= task.CPU && mem >= task.RAM && watts >= task.Watts {
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
type BPMaxMinProacCC struct {
|
||||
base // Type embedding to inherit common functions
|
||||
tasksCreated int
|
||||
tasksRunning int
|
||||
tasks []def.Task
|
||||
metrics map[string]def.Metric
|
||||
running map[string]map[string]bool
|
||||
taskMonitor map[string][]def.Task
|
||||
availablePower map[string]float64
|
||||
totalPower map[string]float64
|
||||
ignoreWatts bool
|
||||
capper *pcp.ClusterwideCapper
|
||||
ticker *time.Ticker
|
||||
recapTicker *time.Ticker
|
||||
isCapping bool // indicate whether we are currently performing cluster-wide capping.
|
||||
isRecapping bool // indicate whether we are currently performing cluster-wide recapping.
|
||||
|
||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||
// about to schedule a new task
|
||||
RecordPCP bool
|
||||
|
||||
// This channel is closed when the program receives an interrupt,
|
||||
// signalling that the program should shut down
|
||||
Shutdown chan struct{}
|
||||
// This channel is closed after shutdown is closed, and only when all
|
||||
// outstanding tasks have been cleaned up
|
||||
Done chan struct{}
|
||||
|
||||
// Controls when to shutdown pcp logging
|
||||
PCPLog chan struct{}
|
||||
|
||||
schedTrace *log.Logger
|
||||
}
|
||||
|
||||
// New electron scheduler
|
||||
func NewBPMaxMinProacCC(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPMaxMinProacCC {
|
||||
sort.Sort(def.WattsSorter(tasks))
|
||||
|
||||
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
s := &BPMaxMinProacCC{
|
||||
tasks: tasks,
|
||||
ignoreWatts: ignoreWatts,
|
||||
Shutdown: make(chan struct{}),
|
||||
Done: make(chan struct{}),
|
||||
PCPLog: make(chan struct{}),
|
||||
running: make(map[string]map[string]bool),
|
||||
taskMonitor: make(map[string][]def.Task),
|
||||
availablePower: make(map[string]float64),
|
||||
totalPower: make(map[string]float64),
|
||||
RecordPCP: false,
|
||||
capper: pcp.GetClusterwideCapperInstance(),
|
||||
ticker: time.NewTicker(10 * time.Second),
|
||||
recapTicker: time.NewTicker(20 * time.Second),
|
||||
isCapping: false,
|
||||
isRecapping: false,
|
||||
schedTrace: log.New(logFile, "", log.LstdFlags),
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// mutex
|
||||
var bpMaxMinProacCCMutex sync.Mutex
|
||||
|
||||
func (s *BPMaxMinProacCC) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||
s.tasksCreated++
|
||||
|
||||
if !s.RecordPCP {
|
||||
// Turn on logging.
|
||||
s.RecordPCP = true
|
||||
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
||||
}
|
||||
|
||||
// If this is our first time running into this Agent
|
||||
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
||||
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
||||
}
|
||||
|
||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||
// even though they have the same parameters.
|
||||
task.SetTaskID(*proto.String("electron-" + taskName))
|
||||
// Add task to the list of tasks running on the node.
|
||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||
if len(s.taskMonitor[*offer.Hostname]) == 0 {
|
||||
s.taskMonitor[*offer.Hostname] = []def.Task{task}
|
||||
} else {
|
||||
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
|
||||
}
|
||||
|
||||
resources := []*mesos.Resource{
|
||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||
mesosutil.NewScalarResource("mem", task.RAM),
|
||||
}
|
||||
|
||||
if !s.ignoreWatts {
|
||||
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
|
||||
}
|
||||
|
||||
return &mesos.TaskInfo{
|
||||
Name: proto.String(taskName),
|
||||
TaskId: &mesos.TaskID{
|
||||
Value: proto.String("electron-" + taskName),
|
||||
},
|
||||
SlaveId: offer.SlaveId,
|
||||
Resources: resources,
|
||||
Command: &mesos.CommandInfo{
|
||||
Value: proto.String(task.CMD),
|
||||
},
|
||||
Container: &mesos.ContainerInfo{
|
||||
Type: mesos.ContainerInfo_DOCKER.Enum(),
|
||||
Docker: &mesos.ContainerInfo_DockerInfo{
|
||||
Image: proto.String(task.Image),
|
||||
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var bpMaxMinProacCCCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
|
||||
func (s *BPMaxMinProacCC) startCapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.ticker.C:
|
||||
// Need to cap the cluster to the bpMaxMinProacCCCapValue
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
if bpMaxMinProacCCCapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding the cap value to the nearest int
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(bpMaxMinProacCCCapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCCapValue+0.5)))
|
||||
}
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// go routine to recap the entire cluster in regular intervals of time.
|
||||
var bpMaxMinProacCCRecapValue = 0.0 // The cluster-wide cap value when recapping.
|
||||
func (s *BPMaxMinProacCC) startRecapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.recapTicker.C:
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
// If stopped performing cluster-wide capping, then we need to recap.
|
||||
if s.isRecapping && bpMaxMinProacCCRecapValue > 0.0 {
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding the recap value to the nearest int
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(bpMaxMinProacCCRecapValue+0.5))); err != nil {
|
||||
log.Println(err)
|
||||
}
|
||||
}
|
||||
log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCRecapValue+0.5)))
|
||||
}
|
||||
// Setting the recapping to false
|
||||
s.isRecapping = false
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
}
|
||||
|
||||
// Stop cluster-wide capping
|
||||
func (s *BPMaxMinProacCC) stopCapping() {
|
||||
if s.isCapping {
|
||||
log.Println("Stopping the cluster-wide capping.")
|
||||
s.ticker.Stop()
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
s.isCapping = false
|
||||
s.isRecapping = true
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Stop the cluster-wide recapping
|
||||
func (s *BPMaxMinProacCC) stopRecapping() {
|
||||
// If not capping, then definitely recapping.
|
||||
if !s.isCapping && s.isRecapping {
|
||||
log.Println("Stopping the cluster-wide re-capping.")
|
||||
s.recapTicker.Stop()
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
s.isRecapping = false
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Determine if the remaining space inside of the offer is enough for
|
||||
// the task we need to create. If it is, create TaskInfo and return it.
|
||||
func (s *BPMaxMinProacCC) CheckFit(i int,
|
||||
task def.Task,
|
||||
offer *mesos.Offer,
|
||||
totalCPU *float64,
|
||||
totalRAM *float64,
|
||||
totalWatts *float64) (bool, *mesos.TaskInfo) {
|
||||
|
||||
offerCPU, offerRAM, offerWatts := OfferAgg(offer)
|
||||
|
||||
// Does the task fit
|
||||
if (s.ignoreWatts || (offerWatts >= (*totalWatts + task.Watts))) &&
|
||||
(offerCPU >= (*totalCPU + task.CPU)) &&
|
||||
(offerRAM >= (*totalRAM + task.RAM)) {
|
||||
|
||||
// Capping the cluster if haven't yet started
|
||||
if !s.isCapping {
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
s.isCapping = true
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
s.startCapping()
|
||||
}
|
||||
|
||||
tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task)
|
||||
if err == nil {
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
bpMaxMinProacCCCapValue = tempCap
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
} else {
|
||||
log.Println("Failed to determine new cluster-wide cap:")
|
||||
log.Println(err)
|
||||
}
|
||||
|
||||
*totalWatts += task.Watts
|
||||
*totalCPU += task.CPU
|
||||
*totalRAM += task.RAM
|
||||
log.Println("Co-Located with: ")
|
||||
coLocated(s.running[offer.GetSlaveId().GoString()])
|
||||
|
||||
taskToSchedule := s.newTask(offer, task)
|
||||
|
||||
fmt.Println("Inst: ", *task.Instances)
|
||||
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
|
||||
*task.Instances--
|
||||
|
||||
if *task.Instances <= 0 {
|
||||
// All instances of task have been scheduled, remove it
|
||||
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
|
||||
|
||||
if len(s.tasks) <= 0 {
|
||||
log.Println("Done scheduling all tasks")
|
||||
// Need to stop the cluster wide capping
|
||||
s.stopCapping()
|
||||
s.startRecapping() // Load changes after every task finishes and hence, we need to change the capping of the cluster.
|
||||
close(s.Shutdown)
|
||||
}
|
||||
}
|
||||
|
||||
return true, taskToSchedule
|
||||
}
|
||||
|
||||
return false, nil
|
||||
|
||||
}
|
||||
|
||||
func (s *BPMaxMinProacCC) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
|
||||
log.Printf("Received %d resource offers", len(offers))
|
||||
|
||||
// retrieving the available power for all the hosts in the offers.
|
||||
for _, offer := range offers {
|
||||
_, _, offerWatts := OfferAgg(offer)
|
||||
s.availablePower[*offer.Hostname] = offerWatts
|
||||
// setting total power if the first time
|
||||
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
||||
s.totalPower[*offer.Hostname] = offerWatts
|
||||
}
|
||||
}
|
||||
|
||||
for host, tpower := range s.totalPower {
|
||||
log.Printf("TotalPower[%s] = %f", host, tpower)
|
||||
}
|
||||
|
||||
for _, offer := range offers {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
||||
driver.DeclineOffer(offer.Id, longFilter)
|
||||
|
||||
log.Println("Number of tasks still running: ", s.tasksRunning)
|
||||
continue
|
||||
default:
|
||||
}
|
||||
|
||||
tasks := []*mesos.TaskInfo{}
|
||||
|
||||
offerTaken := false
|
||||
totalWatts := 0.0
|
||||
totalCPU := 0.0
|
||||
totalRAM := 0.0
|
||||
|
||||
// Assumes s.tasks is ordered in non-decreasing median max peak order
|
||||
|
||||
// Attempt to schedule a single instance of the heaviest workload available first
|
||||
// Start from the back until one fits
|
||||
for i:= len(s.tasks)-1; i >= 0; i-- {
|
||||
|
||||
task := s.tasks[i]
|
||||
// Check host if it exists
|
||||
if task.Host != "" {
|
||||
// Don't take offer if it doesn't match our task's host requirement
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Fix this so index doesn't need to be passed
|
||||
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts)
|
||||
|
||||
if taken {
|
||||
offerTaken = true
|
||||
tasks = append(tasks, taskToSchedule)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Pack the rest of the offer with the smallest tasks
|
||||
for i, task := range s.tasks {
|
||||
|
||||
// Check host if it exists
|
||||
if task.Host != "" {
|
||||
// Don't take offer if it doesn't match our task's host requirement
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
for *task.Instances > 0 {
|
||||
// TODO: Fix this so index doesn't need to be passed
|
||||
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts)
|
||||
|
||||
if taken {
|
||||
offerTaken = true
|
||||
tasks = append(tasks, taskToSchedule)
|
||||
} else {
|
||||
break // Continue on to next task
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if offerTaken {
|
||||
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, defaultFilter)
|
||||
} else {
|
||||
|
||||
// If there was no match for the task
|
||||
fmt.Println("There is not enough resources to launch a task:")
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
|
||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||
driver.DeclineOffer(offer.Id, defaultFilter)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *BPMaxMinProacCC) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
||||
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
|
||||
if *status.State == mesos.TaskState_TASK_RUNNING {
|
||||
s.tasksRunning++
|
||||
} else if IsTerminal(status.State) {
|
||||
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
||||
// Need to remove the task from the window
|
||||
s.capper.TaskFinished(*status.TaskId.Value)
|
||||
// Determining the new cluster wide recap value
|
||||
//tempCap, err := s.capper.Recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
if err == nil {
|
||||
// If new determined recap value is different from the current recap value, then we need to recap.
|
||||
if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpMaxMinProacCCRecapValue+0.5)) {
|
||||
bpMaxMinProacCCRecapValue = tempCap
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
s.isRecapping = true
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
log.Printf("Determined re-cap value: %f\n", bpMaxMinProacCCRecapValue)
|
||||
} else {
|
||||
bpMaxMinProacCCMutex.Lock()
|
||||
s.isRecapping = false
|
||||
bpMaxMinProacCCMutex.Unlock()
|
||||
}
|
||||
} else {
|
||||
log.Println(err)
|
||||
}
|
||||
|
||||
s.tasksRunning--
|
||||
if s.tasksRunning == 0 {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
// Need to stop the cluster-wide recapping
|
||||
s.stopRecapping()
|
||||
close(s.Done)
|
||||
default:
|
||||
}
|
||||
}
|
||||
}
|
||||
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
|
||||
}
|
Reference in a new issue