Adding dep files and dependencies.
This commit is contained in:
parent
45f9efa578
commit
b341c0a0e4
539 changed files with 313111 additions and 0 deletions
113
vendor/github.com/montanaflynn/stats/regression.go
generated
vendored
Normal file
113
vendor/github.com/montanaflynn/stats/regression.go
generated
vendored
Normal file
|
@ -0,0 +1,113 @@
|
|||
package stats
|
||||
|
||||
import "math"
|
||||
|
||||
// Series is a container for a series of data
|
||||
type Series []Coordinate
|
||||
|
||||
// Coordinate holds the data in a series
|
||||
type Coordinate struct {
|
||||
X, Y float64
|
||||
}
|
||||
|
||||
// LinearRegression finds the least squares linear regression on data series
|
||||
func LinearRegression(s Series) (regressions Series, err error) {
|
||||
|
||||
if len(s) == 0 {
|
||||
return nil, EmptyInput
|
||||
}
|
||||
|
||||
// Placeholder for the math to be done
|
||||
var sum [5]float64
|
||||
|
||||
// Loop over data keeping index in place
|
||||
i := 0
|
||||
for ; i < len(s); i++ {
|
||||
sum[0] += s[i].X
|
||||
sum[1] += s[i].Y
|
||||
sum[2] += s[i].X * s[i].X
|
||||
sum[3] += s[i].X * s[i].Y
|
||||
sum[4] += s[i].Y * s[i].Y
|
||||
}
|
||||
|
||||
// Find gradient and intercept
|
||||
f := float64(i)
|
||||
gradient := (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
|
||||
intercept := (sum[1] / f) - (gradient * sum[0] / f)
|
||||
|
||||
// Create the new regression series
|
||||
for j := 0; j < len(s); j++ {
|
||||
regressions = append(regressions, Coordinate{
|
||||
X: s[j].X,
|
||||
Y: s[j].X*gradient + intercept,
|
||||
})
|
||||
}
|
||||
|
||||
return regressions, nil
|
||||
|
||||
}
|
||||
|
||||
// ExponentialRegression returns an exponential regression on data series
|
||||
func ExponentialRegression(s Series) (regressions Series, err error) {
|
||||
|
||||
if len(s) == 0 {
|
||||
return nil, EmptyInput
|
||||
}
|
||||
|
||||
var sum [6]float64
|
||||
|
||||
for i := 0; i < len(s); i++ {
|
||||
sum[0] += s[i].X
|
||||
sum[1] += s[i].Y
|
||||
sum[2] += s[i].X * s[i].X * s[i].Y
|
||||
sum[3] += s[i].Y * math.Log(s[i].Y)
|
||||
sum[4] += s[i].X * s[i].Y * math.Log(s[i].Y)
|
||||
sum[5] += s[i].X * s[i].Y
|
||||
}
|
||||
|
||||
denominator := (sum[1]*sum[2] - sum[5]*sum[5])
|
||||
a := math.Pow(math.E, (sum[2]*sum[3]-sum[5]*sum[4])/denominator)
|
||||
b := (sum[1]*sum[4] - sum[5]*sum[3]) / denominator
|
||||
|
||||
for j := 0; j < len(s); j++ {
|
||||
regressions = append(regressions, Coordinate{
|
||||
X: s[j].X,
|
||||
Y: a * math.Exp(b*s[j].X),
|
||||
})
|
||||
}
|
||||
|
||||
return regressions, nil
|
||||
|
||||
}
|
||||
|
||||
// LogarithmicRegression returns an logarithmic regression on data series
|
||||
func LogarithmicRegression(s Series) (regressions Series, err error) {
|
||||
|
||||
if len(s) == 0 {
|
||||
return nil, EmptyInput
|
||||
}
|
||||
|
||||
var sum [4]float64
|
||||
|
||||
i := 0
|
||||
for ; i < len(s); i++ {
|
||||
sum[0] += math.Log(s[i].X)
|
||||
sum[1] += s[i].Y * math.Log(s[i].X)
|
||||
sum[2] += s[i].Y
|
||||
sum[3] += math.Pow(math.Log(s[i].X), 2)
|
||||
}
|
||||
|
||||
f := float64(i)
|
||||
a := (f*sum[1] - sum[2]*sum[0]) / (f*sum[3] - sum[0]*sum[0])
|
||||
b := (sum[2] - a*sum[0]) / f
|
||||
|
||||
for j := 0; j < len(s); j++ {
|
||||
regressions = append(regressions, Coordinate{
|
||||
X: s[j].X,
|
||||
Y: b + a*math.Log(s[j].X),
|
||||
})
|
||||
}
|
||||
|
||||
return regressions, nil
|
||||
|
||||
}
|
Reference in a new issue