formatted the code
This commit is contained in:
parent
4d13c432c4
commit
b7394b8762
2 changed files with 397 additions and 396 deletions
|
@ -11,51 +11,52 @@ This is not a scheduler but a scheduling scheme that schedulers can use.
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"container/list"
|
||||
"errors"
|
||||
"github.com/montanaflynn/stats"
|
||||
"sort"
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"container/list"
|
||||
"errors"
|
||||
"github.com/montanaflynn/stats"
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Structure containing utility data structures used to compute cluster-wide dynamic cap.
|
||||
type clusterwideCapper struct {
|
||||
// window of tasks.
|
||||
window_of_tasks list.List
|
||||
// The current sum of requested powers of the tasks in the window.
|
||||
current_sum float64
|
||||
// The current number of tasks in the window.
|
||||
number_of_tasks_in_window int
|
||||
// window of tasks.
|
||||
window_of_tasks list.List
|
||||
// The current sum of requested powers of the tasks in the window.
|
||||
current_sum float64
|
||||
// The current number of tasks in the window.
|
||||
number_of_tasks_in_window int
|
||||
}
|
||||
|
||||
// Defining constructor for clusterwideCapper. Please don't call this directly and instead use getClusterwideCapperInstance().
|
||||
func newClusterwideCapper() *clusterwideCapper {
|
||||
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
|
||||
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
|
||||
}
|
||||
|
||||
// Singleton instance of clusterwideCapper
|
||||
var singleton_capper *clusterwideCapper
|
||||
|
||||
// Retrieve the singleton instance of clusterwideCapper.
|
||||
func getClusterwideCapperInstance() *clusterwideCapper {
|
||||
if singleton_capper == nil {
|
||||
singleton_capper = newClusterwideCapper()
|
||||
} else {
|
||||
// Do nothing
|
||||
}
|
||||
return singleton_capper
|
||||
if singleton_capper == nil {
|
||||
singleton_capper = newClusterwideCapper()
|
||||
} else {
|
||||
// Do nothing
|
||||
}
|
||||
return singleton_capper
|
||||
}
|
||||
|
||||
// Clear and initialize all the members of clusterwideCapper.
|
||||
func (capper clusterwideCapper) clear() {
|
||||
capper.window_of_tasks.Init()
|
||||
capper.current_sum = 0
|
||||
capper.number_of_tasks_in_window = 0
|
||||
capper.window_of_tasks.Init()
|
||||
capper.current_sum = 0
|
||||
capper.number_of_tasks_in_window = 0
|
||||
}
|
||||
|
||||
// Compute the average of watts of all the tasks in the window.
|
||||
func (capper clusterwideCapper) average() float64 {
|
||||
return capper.current_sum / float64(capper.window_of_tasks.Len())
|
||||
return capper.current_sum / float64(capper.window_of_tasks.Len())
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -65,22 +66,22 @@ Using clusterwideCapper#window_of_tasks to store the tasks.
|
|||
Task at position 0 (oldest task) is removed when the window is full and new task arrives.
|
||||
*/
|
||||
func (capper clusterwideCapper) running_average_of_watts(tsk *def.Task) float64 {
|
||||
var average float64
|
||||
if capper.number_of_tasks_in_window < constants.Window_size {
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.number_of_tasks_in_window++
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
} else {
|
||||
task_to_remove_element := capper.window_of_tasks.Front()
|
||||
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
capper.window_of_tasks.Remove(task_to_remove_element)
|
||||
}
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
}
|
||||
average = capper.average()
|
||||
return average
|
||||
var average float64
|
||||
if capper.number_of_tasks_in_window < constants.Window_size {
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.number_of_tasks_in_window++
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
} else {
|
||||
task_to_remove_element := capper.window_of_tasks.Front()
|
||||
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
capper.window_of_tasks.Remove(task_to_remove_element)
|
||||
}
|
||||
capper.window_of_tasks.PushBack(tsk)
|
||||
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
|
||||
}
|
||||
average = capper.average()
|
||||
return average
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -91,22 +92,22 @@ Calculating cap value.
|
|||
3. The median is now the cap.
|
||||
*/
|
||||
func (capper clusterwideCapper) get_cap(running_average_to_total_power_percentage map[string]float64) float64 {
|
||||
var values []float64
|
||||
// Validation
|
||||
if running_average_to_total_power_percentage == nil {
|
||||
return 100.0
|
||||
}
|
||||
for _, apower := range running_average_to_total_power_percentage {
|
||||
values = append(values, apower)
|
||||
}
|
||||
// sorting the values in ascending order.
|
||||
sort.Float64s(values)
|
||||
// Calculating the median
|
||||
if median, err := stats.Median(values); err == nil {
|
||||
return median
|
||||
}
|
||||
// should never reach here. If here, then just setting the cap value to be 100
|
||||
return 100.0
|
||||
var values []float64
|
||||
// Validation
|
||||
if running_average_to_total_power_percentage == nil {
|
||||
return 100.0
|
||||
}
|
||||
for _, apower := range running_average_to_total_power_percentage {
|
||||
values = append(values, apower)
|
||||
}
|
||||
// sorting the values in ascending order.
|
||||
sort.Float64s(values)
|
||||
// Calculating the median
|
||||
if median, err := stats.Median(values); err == nil {
|
||||
return median
|
||||
}
|
||||
// should never reach here. If here, then just setting the cap value to be 100
|
||||
return 100.0
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -120,72 +121,72 @@ Recapping the entire cluster.
|
|||
This needs to be called whenever a task finishes execution.
|
||||
*/
|
||||
func (capper clusterwideCapper) recap(total_power map[string]float64,
|
||||
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil || task_monitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
|
||||
}
|
||||
total_allocated_power := 0.0
|
||||
total_running_tasks := 0
|
||||
for _, tasks := range task_monitor {
|
||||
index := 0
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finished_taskId {
|
||||
index = i
|
||||
continue
|
||||
}
|
||||
total_allocated_power += float64(task.Watts) * constants.Cap_margin
|
||||
total_running_tasks++
|
||||
}
|
||||
tasks = append(tasks[:index], tasks[index+1:]...)
|
||||
}
|
||||
average := total_allocated_power / float64(total_running_tasks)
|
||||
ratios := []float64{}
|
||||
for _, tpower := range total_power {
|
||||
ratios = append(ratios, (average/tpower) * 100)
|
||||
}
|
||||
sort.Float64s(ratios)
|
||||
median, err := stats.Median(ratios)
|
||||
if err == nil {
|
||||
return median, nil
|
||||
} else {
|
||||
return 100, err
|
||||
}
|
||||
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil || task_monitor == nil {
|
||||
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
|
||||
}
|
||||
total_allocated_power := 0.0
|
||||
total_running_tasks := 0
|
||||
for _, tasks := range task_monitor {
|
||||
index := 0
|
||||
for i, task := range tasks {
|
||||
if task.TaskID == finished_taskId {
|
||||
index = i
|
||||
continue
|
||||
}
|
||||
total_allocated_power += float64(task.Watts) * constants.Cap_margin
|
||||
total_running_tasks++
|
||||
}
|
||||
tasks = append(tasks[:index], tasks[index+1:]...)
|
||||
}
|
||||
average := total_allocated_power / float64(total_running_tasks)
|
||||
ratios := []float64{}
|
||||
for _, tpower := range total_power {
|
||||
ratios = append(ratios, (average/tpower)*100)
|
||||
}
|
||||
sort.Float64s(ratios)
|
||||
median, err := stats.Median(ratios)
|
||||
if err == nil {
|
||||
return median, nil
|
||||
} else {
|
||||
return 100, err
|
||||
}
|
||||
}
|
||||
|
||||
/* Quick sort algorithm to sort tasks, in place, in ascending order of power.*/
|
||||
func (capper clusterwideCapper) quick_sort(low int, high int, tasks_to_sort []*def.Task) {
|
||||
i := low
|
||||
j := high
|
||||
// calculating the pivot
|
||||
pivot_index := low + (high - low)/2
|
||||
pivot := tasks_to_sort[pivot_index]
|
||||
for i <= j {
|
||||
for tasks_to_sort[i].Watts < pivot.Watts {
|
||||
i++
|
||||
}
|
||||
for tasks_to_sort[j].Watts > pivot.Watts {
|
||||
j--
|
||||
}
|
||||
if i <= j {
|
||||
temp := tasks_to_sort[i]
|
||||
tasks_to_sort[i] = tasks_to_sort[j]
|
||||
tasks_to_sort[j] = temp
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
if low < j {
|
||||
capper.quick_sort(low, j, tasks_to_sort)
|
||||
}
|
||||
if i < high {
|
||||
capper.quick_sort(i, high, tasks_to_sort)
|
||||
}
|
||||
i := low
|
||||
j := high
|
||||
// calculating the pivot
|
||||
pivot_index := low + (high-low)/2
|
||||
pivot := tasks_to_sort[pivot_index]
|
||||
for i <= j {
|
||||
for tasks_to_sort[i].Watts < pivot.Watts {
|
||||
i++
|
||||
}
|
||||
for tasks_to_sort[j].Watts > pivot.Watts {
|
||||
j--
|
||||
}
|
||||
if i <= j {
|
||||
temp := tasks_to_sort[i]
|
||||
tasks_to_sort[i] = tasks_to_sort[j]
|
||||
tasks_to_sort[j] = temp
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
if low < j {
|
||||
capper.quick_sort(low, j, tasks_to_sort)
|
||||
}
|
||||
if i < high {
|
||||
capper.quick_sort(i, high, tasks_to_sort)
|
||||
}
|
||||
}
|
||||
|
||||
// Sorting tasks in ascending order of requested watts.
|
||||
func (capper clusterwideCapper) sort_tasks(tasks_to_sort []*def.Task) {
|
||||
capper.quick_sort(0, len(tasks_to_sort)-1, tasks_to_sort)
|
||||
capper.quick_sort(0, len(tasks_to_sort)-1, tasks_to_sort)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -195,86 +196,86 @@ This completed task needs to be removed from the window of tasks (if it is still
|
|||
so that it doesn't contribute to the computation of the cap value.
|
||||
*/
|
||||
func (capper clusterwideCapper) taskFinished(taskID string) {
|
||||
// If the window is empty the just return. This condition should technically return false.
|
||||
if capper.window_of_tasks.Len() == 0 {
|
||||
return
|
||||
}
|
||||
// If the window is empty the just return. This condition should technically return false.
|
||||
if capper.window_of_tasks.Len() == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Checking whether the task with the given taskID is currently present in the window of tasks.
|
||||
var task_element_to_remove *list.Element
|
||||
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
|
||||
if tsk, ok := task_element.Value.(*def.Task); ok {
|
||||
if tsk.TaskID == taskID {
|
||||
task_element_to_remove = task_element
|
||||
}
|
||||
}
|
||||
}
|
||||
// Checking whether the task with the given taskID is currently present in the window of tasks.
|
||||
var task_element_to_remove *list.Element
|
||||
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
|
||||
if tsk, ok := task_element.Value.(*def.Task); ok {
|
||||
if tsk.TaskID == taskID {
|
||||
task_element_to_remove = task_element
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ee need to remove the task from the window.
|
||||
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
||||
capper.window_of_tasks.Remove(task_element_to_remove)
|
||||
capper.number_of_tasks_in_window -= 1
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
}
|
||||
// Ee need to remove the task from the window.
|
||||
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
||||
capper.window_of_tasks.Remove(task_element_to_remove)
|
||||
capper.number_of_tasks_in_window -= 1
|
||||
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
|
||||
}
|
||||
}
|
||||
|
||||
// Ranked based scheduling.
|
||||
func (capper clusterwideCapper) rankedDetermineCap(available_power map[string]float64,
|
||||
tasks_to_schedule []*def.Task) ([]*def.Task, map[int]float64, error) {
|
||||
// Validation
|
||||
if available_power == nil || len(tasks_to_schedule) == 0 {
|
||||
return nil, nil, errors.New("Invalid argument: available_power, tasks_to_schedule")
|
||||
} else {
|
||||
// Need to sort the tasks in ascending order of requested power.
|
||||
capper.sort_tasks(tasks_to_schedule)
|
||||
tasks_to_schedule []*def.Task) ([]*def.Task, map[int]float64, error) {
|
||||
// Validation
|
||||
if available_power == nil || len(tasks_to_schedule) == 0 {
|
||||
return nil, nil, errors.New("Invalid argument: available_power, tasks_to_schedule")
|
||||
} else {
|
||||
// Need to sort the tasks in ascending order of requested power.
|
||||
capper.sort_tasks(tasks_to_schedule)
|
||||
|
||||
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
|
||||
cluster_wide_cap_values := make(map[int]float64)
|
||||
index := 0
|
||||
for _, tsk := range tasks_to_schedule {
|
||||
/*
|
||||
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
|
||||
Calling Fcfs_determine_cap(...) just to avoid redundant code.
|
||||
*/
|
||||
if cap, err := capper.fcfsDetermineCap(available_power, tsk); err == nil {
|
||||
cluster_wide_cap_values[index] = cap
|
||||
} else {
|
||||
return nil, nil, err
|
||||
}
|
||||
index++
|
||||
}
|
||||
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
|
||||
return tasks_to_schedule, cluster_wide_cap_values, nil
|
||||
}
|
||||
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
|
||||
cluster_wide_cap_values := make(map[int]float64)
|
||||
index := 0
|
||||
for _, tsk := range tasks_to_schedule {
|
||||
/*
|
||||
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
|
||||
Calling Fcfs_determine_cap(...) just to avoid redundant code.
|
||||
*/
|
||||
if cap, err := capper.fcfsDetermineCap(available_power, tsk); err == nil {
|
||||
cluster_wide_cap_values[index] = cap
|
||||
} else {
|
||||
return nil, nil, err
|
||||
}
|
||||
index++
|
||||
}
|
||||
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
|
||||
return tasks_to_schedule, cluster_wide_cap_values, nil
|
||||
}
|
||||
}
|
||||
|
||||
// First come first serve scheduling.
|
||||
func (capper clusterwideCapper) fcfsDetermineCap(total_power map[string]float64,
|
||||
new_task *def.Task) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil {
|
||||
return 100, errors.New("Invalid argument: total_power")
|
||||
} else {
|
||||
// Need to calculate the running average
|
||||
running_average := capper.running_average_of_watts(new_task)
|
||||
// For each node, calculate the percentage of the running average to the total power.
|
||||
running_average_to_total_power_percentage := make(map[string]float64)
|
||||
for host, tpower := range total_power {
|
||||
if tpower >= running_average {
|
||||
running_average_to_total_power_percentage[host] = (running_average/tpower) * 100
|
||||
} else {
|
||||
// We don't consider this host for the computation of the cluster wide cap.
|
||||
}
|
||||
}
|
||||
new_task *def.Task) (float64, error) {
|
||||
// Validation
|
||||
if total_power == nil {
|
||||
return 100, errors.New("Invalid argument: total_power")
|
||||
} else {
|
||||
// Need to calculate the running average
|
||||
running_average := capper.running_average_of_watts(new_task)
|
||||
// For each node, calculate the percentage of the running average to the total power.
|
||||
running_average_to_total_power_percentage := make(map[string]float64)
|
||||
for host, tpower := range total_power {
|
||||
if tpower >= running_average {
|
||||
running_average_to_total_power_percentage[host] = (running_average / tpower) * 100
|
||||
} else {
|
||||
// We don't consider this host for the computation of the cluster wide cap.
|
||||
}
|
||||
}
|
||||
|
||||
// Determine the cluster wide cap value.
|
||||
cap_value := capper.get_cap(running_average_to_total_power_percentage)
|
||||
// Need to cap the cluster to this value.
|
||||
return cap_value, nil
|
||||
}
|
||||
// Determine the cluster wide cap value.
|
||||
cap_value := capper.get_cap(running_average_to_total_power_percentage)
|
||||
// Need to cap the cluster to this value.
|
||||
return cap_value, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Stringer for an instance of clusterwideCapper
|
||||
func (capper clusterwideCapper) string() string {
|
||||
return "Cluster Capper -- Proactively cap the entire cluster."
|
||||
return "Cluster Capper -- Proactively cap the entire cluster."
|
||||
}
|
||||
|
|
|
@ -1,111 +1,111 @@
|
|||
package schedulers
|
||||
|
||||
import (
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
"github.com/mesos/mesos-go/mesosutil"
|
||||
sched "github.com/mesos/mesos-go/scheduler"
|
||||
"log"
|
||||
"math"
|
||||
"strings"
|
||||
"time"
|
||||
"bitbucket.org/sunybingcloud/electron/constants"
|
||||
"bitbucket.org/sunybingcloud/electron/def"
|
||||
"bitbucket.org/sunybingcloud/electron/rapl"
|
||||
"fmt"
|
||||
"github.com/golang/protobuf/proto"
|
||||
mesos "github.com/mesos/mesos-go/mesosproto"
|
||||
"github.com/mesos/mesos-go/mesosutil"
|
||||
sched "github.com/mesos/mesos-go/scheduler"
|
||||
"log"
|
||||
"math"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Decides if to take an offer or not
|
||||
func (_ *ProactiveClusterwideCapFCFS) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
||||
offer_cpu, offer_mem, _ := OfferAgg(offer)
|
||||
offer_cpu, offer_mem, _ := OfferAgg(offer)
|
||||
|
||||
if offer_cpu >= task.CPU && offer_mem >= task.RAM {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
if offer_cpu >= task.CPU && offer_mem >= task.RAM {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// electronScheduler implements the Scheduler interface.
|
||||
type ProactiveClusterwideCapFCFS struct {
|
||||
tasksCreated int
|
||||
tasksRunning int
|
||||
tasks []def.Task
|
||||
metrics map[string]def.Metric
|
||||
running map[string]map[string]bool
|
||||
taskMonitor map[string][]def.Task // store tasks that are currently running.
|
||||
availablePower map[string]float64 // available power for each node in the cluster.
|
||||
totalPower map[string]float64 // total power for each node in the cluster.
|
||||
ignoreWatts bool
|
||||
capper *clusterwideCapper
|
||||
ticker *time.Ticker
|
||||
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
||||
//lock *sync.Mutex
|
||||
tasksCreated int
|
||||
tasksRunning int
|
||||
tasks []def.Task
|
||||
metrics map[string]def.Metric
|
||||
running map[string]map[string]bool
|
||||
taskMonitor map[string][]def.Task // store tasks that are currently running.
|
||||
availablePower map[string]float64 // available power for each node in the cluster.
|
||||
totalPower map[string]float64 // total power for each node in the cluster.
|
||||
ignoreWatts bool
|
||||
capper *clusterwideCapper
|
||||
ticker *time.Ticker
|
||||
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
||||
//lock *sync.Mutex
|
||||
|
||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||
// about to schedule the new task.
|
||||
RecordPCP bool
|
||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||
// about to schedule the new task.
|
||||
RecordPCP bool
|
||||
|
||||
// This channel is closed when the program receives an interrupt,
|
||||
// signalling that the program should shut down.
|
||||
Shutdown chan struct{}
|
||||
// This channel is closed when the program receives an interrupt,
|
||||
// signalling that the program should shut down.
|
||||
Shutdown chan struct{}
|
||||
|
||||
// This channel is closed after shutdown is closed, and only when all
|
||||
// outstanding tasks have been cleaned up.
|
||||
Done chan struct{}
|
||||
// This channel is closed after shutdown is closed, and only when all
|
||||
// outstanding tasks have been cleaned up.
|
||||
Done chan struct{}
|
||||
|
||||
// Controls when to shutdown pcp logging.
|
||||
PCPLog chan struct{}
|
||||
// Controls when to shutdown pcp logging.
|
||||
PCPLog chan struct{}
|
||||
}
|
||||
|
||||
// New electron scheduler.
|
||||
func NewProactiveClusterwideCapFCFS(tasks []def.Task, ignoreWatts bool) *ProactiveClusterwideCapFCFS {
|
||||
s := &ProactiveClusterwideCapFCFS {
|
||||
tasks: tasks,
|
||||
ignoreWatts: ignoreWatts,
|
||||
Shutdown: make(chan struct{}),
|
||||
Done: make(chan struct{}),
|
||||
PCPLog: make(chan struct{}),
|
||||
running: make(map[string]map[string]bool),
|
||||
taskMonitor: make(map[string][]def.Task),
|
||||
availablePower: make(map[string]float64),
|
||||
totalPower: make(map[string]float64),
|
||||
RecordPCP: false,
|
||||
capper: getClusterwideCapperInstance(),
|
||||
ticker: time.NewTicker(5 * time.Second),
|
||||
isCapping: false,
|
||||
//lock: new(sync.Mutex),
|
||||
}
|
||||
return s
|
||||
s := &ProactiveClusterwideCapFCFS{
|
||||
tasks: tasks,
|
||||
ignoreWatts: ignoreWatts,
|
||||
Shutdown: make(chan struct{}),
|
||||
Done: make(chan struct{}),
|
||||
PCPLog: make(chan struct{}),
|
||||
running: make(map[string]map[string]bool),
|
||||
taskMonitor: make(map[string][]def.Task),
|
||||
availablePower: make(map[string]float64),
|
||||
totalPower: make(map[string]float64),
|
||||
RecordPCP: false,
|
||||
capper: getClusterwideCapperInstance(),
|
||||
ticker: time.NewTicker(5 * time.Second),
|
||||
isCapping: false,
|
||||
//lock: new(sync.Mutex),
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||
s.tasksCreated++
|
||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||
s.tasksCreated++
|
||||
|
||||
if !s.RecordPCP {
|
||||
// Turn on logging.
|
||||
s.RecordPCP = true
|
||||
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
||||
}
|
||||
if !s.RecordPCP {
|
||||
// Turn on logging.
|
||||
s.RecordPCP = true
|
||||
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
||||
}
|
||||
|
||||
// If this is our first time running into this Agent
|
||||
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
||||
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
||||
}
|
||||
// If this is our first time running into this Agent
|
||||
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
||||
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
||||
}
|
||||
|
||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||
// even though they have the same parameters.
|
||||
task.SetTaskID(*proto.String(taskName))
|
||||
// Add task to the list of tasks running on the node.
|
||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||
s.taskMonitor[offer.GetSlaveId().GoString()] = []def.Task{task}
|
||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||
// even though they have the same parameters.
|
||||
task.SetTaskID(*proto.String(taskName))
|
||||
// Add task to the list of tasks running on the node.
|
||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||
s.taskMonitor[offer.GetSlaveId().GoString()] = []def.Task{task}
|
||||
|
||||
resources := []*mesos.Resource{
|
||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||
mesosutil.NewScalarResource("mem", task.RAM),
|
||||
}
|
||||
resources := []*mesos.Resource{
|
||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||
mesosutil.NewScalarResource("mem", task.RAM),
|
||||
}
|
||||
|
||||
if !s.ignoreWatts {
|
||||
if !s.ignoreWatts {
|
||||
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
|
||||
}
|
||||
|
||||
|
@ -130,189 +130,189 @@ func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task)
|
|||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Registered(
|
||||
_ sched.SchedulerDriver,
|
||||
frameworkID *mesos.FrameworkID,
|
||||
masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework %s registered with master %s", frameworkID, masterInfo)
|
||||
_ sched.SchedulerDriver,
|
||||
frameworkID *mesos.FrameworkID,
|
||||
masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework %s registered with master %s", frameworkID, masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Reregistered(_ sched.SchedulerDriver, masterInfo *mesos.MasterInfo) {
|
||||
log.Printf("Framework re-registered with master %s", masterInfo)
|
||||
log.Printf("Framework re-registered with master %s", masterInfo)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) Disconnected(sched.SchedulerDriver) {
|
||||
// Need to stop the capping process.
|
||||
s.ticker.Stop()
|
||||
s.isCapping = false
|
||||
log.Println("Framework disconnected with master")
|
||||
// Need to stop the capping process.
|
||||
s.ticker.Stop()
|
||||
s.isCapping = false
|
||||
log.Println("Framework disconnected with master")
|
||||
}
|
||||
|
||||
// go routine to cap the entire cluster in regular intervals of time.
|
||||
var currentCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
|
||||
func (s *ProactiveClusterwideCapFCFS) startCapping() {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <- s.ticker.C:
|
||||
// Need to cap the cluster to the currentCapValue.
|
||||
if currentCapValue > 0.0 {
|
||||
//mutex.Lock()
|
||||
//s.lock.Lock()
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(currentCapValue + 0.5))); err != nil {
|
||||
fmt.Println(err)
|
||||
} else {
|
||||
fmt.Printf("Successfully capped %s to %f%\n", host, currentCapValue)
|
||||
}
|
||||
}
|
||||
//mutex.Unlock()
|
||||
//s.lock.Unlock()
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-s.ticker.C:
|
||||
// Need to cap the cluster to the currentCapValue.
|
||||
if currentCapValue > 0.0 {
|
||||
//mutex.Lock()
|
||||
//s.lock.Lock()
|
||||
for _, host := range constants.Hosts {
|
||||
// Rounding curreCapValue to the nearest int.
|
||||
if err := rapl.Cap(host, "rapl", int(math.Floor(currentCapValue+0.5))); err != nil {
|
||||
fmt.Println(err)
|
||||
} else {
|
||||
fmt.Printf("Successfully capped %s to %f%\n", host, currentCapValue)
|
||||
}
|
||||
}
|
||||
//mutex.Unlock()
|
||||
//s.lock.Unlock()
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Stop cluster wide capping
|
||||
func (s *ProactiveClusterwideCapFCFS) stopCapping() {
|
||||
if s.isCapping {
|
||||
log.Println("Stopping the cluster wide capping.")
|
||||
s.ticker.Stop()
|
||||
s.isCapping = false
|
||||
}
|
||||
if s.isCapping {
|
||||
log.Println("Stopping the cluster wide capping.")
|
||||
s.ticker.Stop()
|
||||
s.isCapping = false
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Need to reduce the time complexity: looping over offers twice (Possible to do it just once?).
|
||||
func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
|
||||
log.Printf("Received %d resource offers", len(offers))
|
||||
log.Printf("Received %d resource offers", len(offers))
|
||||
|
||||
// retrieving the available power for all the hosts in the offers.
|
||||
for _, offer := range offers {
|
||||
_, _, offer_watts := OfferAgg(offer)
|
||||
s.availablePower[*offer.Hostname] = offer_watts
|
||||
// setting total power if the first time.
|
||||
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
||||
s.totalPower[*offer.Hostname] = offer_watts
|
||||
}
|
||||
}
|
||||
// retrieving the available power for all the hosts in the offers.
|
||||
for _, offer := range offers {
|
||||
_, _, offer_watts := OfferAgg(offer)
|
||||
s.availablePower[*offer.Hostname] = offer_watts
|
||||
// setting total power if the first time.
|
||||
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
||||
s.totalPower[*offer.Hostname] = offer_watts
|
||||
}
|
||||
}
|
||||
|
||||
for host, tpower := range s.totalPower {
|
||||
fmt.Printf("TotalPower[%s] = %f\n", host, tpower)
|
||||
}
|
||||
for host, apower := range s.availablePower {
|
||||
fmt.Printf("AvailablePower[%s] = %f\n", host, apower)
|
||||
}
|
||||
for host, tpower := range s.totalPower {
|
||||
fmt.Printf("TotalPower[%s] = %f\n", host, tpower)
|
||||
}
|
||||
for host, apower := range s.availablePower {
|
||||
fmt.Printf("AvailablePower[%s] = %f\n", host, apower)
|
||||
}
|
||||
|
||||
for _, offer := range offers {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
||||
driver.DeclineOffer(offer.Id, longFilter)
|
||||
for _, offer := range offers {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
||||
driver.DeclineOffer(offer.Id, longFilter)
|
||||
|
||||
log.Println("Number of tasks still running: ", s.tasksRunning)
|
||||
continue
|
||||
default:
|
||||
}
|
||||
log.Println("Number of tasks still running: ", s.tasksRunning)
|
||||
continue
|
||||
default:
|
||||
}
|
||||
|
||||
/*
|
||||
Clusterwide Capping strategy
|
||||
/*
|
||||
Clusterwide Capping strategy
|
||||
|
||||
For each task in s.tasks,
|
||||
1. Need to check whether the offer can be taken or not (based on CPU and RAM requirements).
|
||||
2. If the tasks fits the offer, then I need to detemrine the cluster wide cap.
|
||||
3. currentCapValue is updated with the determined cluster wide cap.
|
||||
For each task in s.tasks,
|
||||
1. Need to check whether the offer can be taken or not (based on CPU and RAM requirements).
|
||||
2. If the tasks fits the offer, then I need to detemrine the cluster wide cap.
|
||||
3. currentCapValue is updated with the determined cluster wide cap.
|
||||
|
||||
Cluster wide capping is currently performed at regular intervals of time.
|
||||
TODO: We can choose to cap the cluster only if the clusterwide cap varies more than the current clusterwide cap.
|
||||
Although this sounds like a better approach, it only works when the resource requirements of neighbouring tasks are similar.
|
||||
*/
|
||||
//offer_cpu, offer_ram, _ := OfferAgg(offer)
|
||||
Cluster wide capping is currently performed at regular intervals of time.
|
||||
TODO: We can choose to cap the cluster only if the clusterwide cap varies more than the current clusterwide cap.
|
||||
Although this sounds like a better approach, it only works when the resource requirements of neighbouring tasks are similar.
|
||||
*/
|
||||
//offer_cpu, offer_ram, _ := OfferAgg(offer)
|
||||
|
||||
taken := false
|
||||
//var mutex sync.Mutex
|
||||
taken := false
|
||||
//var mutex sync.Mutex
|
||||
|
||||
for i, task := range s.tasks {
|
||||
// Don't take offer if it doesn't match our task's host requirement.
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
for i, task := range s.tasks {
|
||||
// Don't take offer if it doesn't match our task's host requirement.
|
||||
if !strings.HasPrefix(*offer.Hostname, task.Host) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Does the task fit.
|
||||
if s.takeOffer(offer, task) {
|
||||
// Capping the cluster if haven't yet started,
|
||||
if !s.isCapping {
|
||||
s.startCapping()
|
||||
s.isCapping = true
|
||||
}
|
||||
taken = true
|
||||
//mutex.Lock()
|
||||
//s.lock.Lock()
|
||||
//tempCap, err := s.capper.fcfsDetermineCap(s.availablePower, &task)
|
||||
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
||||
// Does the task fit.
|
||||
if s.takeOffer(offer, task) {
|
||||
// Capping the cluster if haven't yet started,
|
||||
if !s.isCapping {
|
||||
s.startCapping()
|
||||
s.isCapping = true
|
||||
}
|
||||
taken = true
|
||||
//mutex.Lock()
|
||||
//s.lock.Lock()
|
||||
//tempCap, err := s.capper.fcfsDetermineCap(s.availablePower, &task)
|
||||
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
||||
|
||||
if err == nil {
|
||||
currentCapValue = tempCap
|
||||
} else {
|
||||
fmt.Printf("Failed to determine new cluster wide cap: ")
|
||||
fmt.Println(err)
|
||||
}
|
||||
//mutex.Unlock()
|
||||
//s.lock.Unlock()
|
||||
fmt.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
||||
fmt.Printf("Inst: %d", *task.Instances)
|
||||
*task.Instances--
|
||||
if *task.Instances <= 0 {
|
||||
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
||||
s.tasks[i] = s.tasks[len(s.tasks)-1]
|
||||
if err == nil {
|
||||
currentCapValue = tempCap
|
||||
} else {
|
||||
fmt.Printf("Failed to determine new cluster wide cap: ")
|
||||
fmt.Println(err)
|
||||
}
|
||||
//mutex.Unlock()
|
||||
//s.lock.Unlock()
|
||||
fmt.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
||||
fmt.Printf("Inst: %d", *task.Instances)
|
||||
*task.Instances--
|
||||
if *task.Instances <= 0 {
|
||||
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
||||
s.tasks[i] = s.tasks[len(s.tasks)-1]
|
||||
s.tasks = s.tasks[:len(s.tasks)-1]
|
||||
|
||||
if len(s.tasks) <= 0 {
|
||||
log.Println("Done scheduling all tasks")
|
||||
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
||||
s.stopCapping()
|
||||
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
||||
s.stopCapping()
|
||||
close(s.Shutdown)
|
||||
}
|
||||
}
|
||||
break // Offer taken, move on.
|
||||
} else {
|
||||
// Task doesn't fit the offer. Move onto the next offer.
|
||||
}
|
||||
}
|
||||
}
|
||||
break // Offer taken, move on.
|
||||
} else {
|
||||
// Task doesn't fit the offer. Move onto the next offer.
|
||||
}
|
||||
}
|
||||
|
||||
// If no task fit the offer, then declining the offer.
|
||||
if !taken {
|
||||
fmt.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
// If no task fit the offer, then declining the offer.
|
||||
if !taken {
|
||||
fmt.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
||||
cpus, mem, watts := OfferAgg(offer)
|
||||
|
||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||
driver.DeclineOffer(offer.Id, defaultFilter)
|
||||
}
|
||||
}
|
||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||
driver.DeclineOffer(offer.Id, defaultFilter)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
||||
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
||||
|
||||
if *status.State == mesos.TaskState_TASK_RUNNING {
|
||||
s.tasksRunning++
|
||||
} else if IsTerminal(status.State) {
|
||||
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
||||
// Need to remove the task from the window of tasks.
|
||||
s.capper.taskFinished(*status.TaskId.Value)
|
||||
//currentCapValue, _ = s.capper.recap(s.availablePower, s.taskMonitor, *status.TaskId.Value)
|
||||
// Determining the new cluster wide cap.
|
||||
currentCapValue, _ = s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
log.Printf("Recapping the cluster to %f\n", currentCapValue)
|
||||
// Need to remove the task from the window of tasks.
|
||||
s.capper.taskFinished(*status.TaskId.Value)
|
||||
//currentCapValue, _ = s.capper.recap(s.availablePower, s.taskMonitor, *status.TaskId.Value)
|
||||
// Determining the new cluster wide cap.
|
||||
currentCapValue, _ = s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||
log.Printf("Recapping the cluster to %f\n", currentCapValue)
|
||||
|
||||
s.tasksRunning--
|
||||
if s.tasksRunning == 0 {
|
||||
select {
|
||||
case <-s.Shutdown:
|
||||
// Need to stop the capping process.
|
||||
s.stopCapping()
|
||||
// Need to stop the capping process.
|
||||
s.stopCapping()
|
||||
close(s.Done)
|
||||
default:
|
||||
}
|
||||
|
@ -322,20 +322,20 @@ func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver,
|
|||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) FrameworkMessage(driver sched.SchedulerDriver,
|
||||
executorID *mesos.ExecutorID,
|
||||
slaveID *mesos.SlaveID,
|
||||
message string) {
|
||||
executorID *mesos.ExecutorID,
|
||||
slaveID *mesos.SlaveID,
|
||||
message string) {
|
||||
|
||||
log.Println("Getting a framework message: ", message)
|
||||
log.Printf("Received a framework message from some unknown source: %s", *executorID.Value)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) OfferRescinded(_ sched.SchedulerDriver, offerID *mesos.OfferID) {
|
||||
log.Printf("Offer %s rescinded", offerID)
|
||||
log.Printf("Offer %s rescinded", offerID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) SlaveLost(_ sched.SchedulerDriver, slaveID *mesos.SlaveID) {
|
||||
log.Printf("Slave %s lost", slaveID)
|
||||
log.Printf("Slave %s lost", slaveID)
|
||||
}
|
||||
|
||||
func (s *ProactiveClusterwideCapFCFS) ExecutorLost(_ sched.SchedulerDriver, executorID *mesos.ExecutorID, slaveID *mesos.SlaveID, status int) {
|
||||
|
|
Reference in a new issue