formatted the code

This commit is contained in:
Pradyumna Kaushik 2016-11-14 22:53:06 -05:00 committed by Renan DelValle
parent 4d13c432c4
commit b7394b8762
2 changed files with 397 additions and 396 deletions

View file

@ -11,51 +11,52 @@ This is not a scheduler but a scheduling scheme that schedulers can use.
package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"container/list"
"errors"
"github.com/montanaflynn/stats"
"sort"
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"container/list"
"errors"
"github.com/montanaflynn/stats"
"sort"
)
// Structure containing utility data structures used to compute cluster-wide dynamic cap.
type clusterwideCapper struct {
// window of tasks.
window_of_tasks list.List
// The current sum of requested powers of the tasks in the window.
current_sum float64
// The current number of tasks in the window.
number_of_tasks_in_window int
// window of tasks.
window_of_tasks list.List
// The current sum of requested powers of the tasks in the window.
current_sum float64
// The current number of tasks in the window.
number_of_tasks_in_window int
}
// Defining constructor for clusterwideCapper. Please don't call this directly and instead use getClusterwideCapperInstance().
func newClusterwideCapper() *clusterwideCapper {
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
}
// Singleton instance of clusterwideCapper
var singleton_capper *clusterwideCapper
// Retrieve the singleton instance of clusterwideCapper.
func getClusterwideCapperInstance() *clusterwideCapper {
if singleton_capper == nil {
singleton_capper = newClusterwideCapper()
} else {
// Do nothing
}
return singleton_capper
if singleton_capper == nil {
singleton_capper = newClusterwideCapper()
} else {
// Do nothing
}
return singleton_capper
}
// Clear and initialize all the members of clusterwideCapper.
func (capper clusterwideCapper) clear() {
capper.window_of_tasks.Init()
capper.current_sum = 0
capper.number_of_tasks_in_window = 0
capper.window_of_tasks.Init()
capper.current_sum = 0
capper.number_of_tasks_in_window = 0
}
// Compute the average of watts of all the tasks in the window.
func (capper clusterwideCapper) average() float64 {
return capper.current_sum / float64(capper.window_of_tasks.Len())
return capper.current_sum / float64(capper.window_of_tasks.Len())
}
/*
@ -65,22 +66,22 @@ Using clusterwideCapper#window_of_tasks to store the tasks.
Task at position 0 (oldest task) is removed when the window is full and new task arrives.
*/
func (capper clusterwideCapper) running_average_of_watts(tsk *def.Task) float64 {
var average float64
if capper.number_of_tasks_in_window < constants.Window_size {
capper.window_of_tasks.PushBack(tsk)
capper.number_of_tasks_in_window++
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
} else {
task_to_remove_element := capper.window_of_tasks.Front()
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
capper.window_of_tasks.Remove(task_to_remove_element)
}
capper.window_of_tasks.PushBack(tsk)
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
}
average = capper.average()
return average
var average float64
if capper.number_of_tasks_in_window < constants.Window_size {
capper.window_of_tasks.PushBack(tsk)
capper.number_of_tasks_in_window++
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
} else {
task_to_remove_element := capper.window_of_tasks.Front()
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
capper.window_of_tasks.Remove(task_to_remove_element)
}
capper.window_of_tasks.PushBack(tsk)
capper.current_sum += float64(tsk.Watts) * constants.Cap_margin
}
average = capper.average()
return average
}
/*
@ -91,22 +92,22 @@ Calculating cap value.
3. The median is now the cap.
*/
func (capper clusterwideCapper) get_cap(running_average_to_total_power_percentage map[string]float64) float64 {
var values []float64
// Validation
if running_average_to_total_power_percentage == nil {
return 100.0
}
for _, apower := range running_average_to_total_power_percentage {
values = append(values, apower)
}
// sorting the values in ascending order.
sort.Float64s(values)
// Calculating the median
if median, err := stats.Median(values); err == nil {
return median
}
// should never reach here. If here, then just setting the cap value to be 100
return 100.0
var values []float64
// Validation
if running_average_to_total_power_percentage == nil {
return 100.0
}
for _, apower := range running_average_to_total_power_percentage {
values = append(values, apower)
}
// sorting the values in ascending order.
sort.Float64s(values)
// Calculating the median
if median, err := stats.Median(values); err == nil {
return median
}
// should never reach here. If here, then just setting the cap value to be 100
return 100.0
}
/*
@ -120,72 +121,72 @@ Recapping the entire cluster.
This needs to be called whenever a task finishes execution.
*/
func (capper clusterwideCapper) recap(total_power map[string]float64,
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
// Validation
if total_power == nil || task_monitor == nil {
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
}
total_allocated_power := 0.0
total_running_tasks := 0
for _, tasks := range task_monitor {
index := 0
for i, task := range tasks {
if task.TaskID == finished_taskId {
index = i
continue
}
total_allocated_power += float64(task.Watts) * constants.Cap_margin
total_running_tasks++
}
tasks = append(tasks[:index], tasks[index+1:]...)
}
average := total_allocated_power / float64(total_running_tasks)
ratios := []float64{}
for _, tpower := range total_power {
ratios = append(ratios, (average/tpower) * 100)
}
sort.Float64s(ratios)
median, err := stats.Median(ratios)
if err == nil {
return median, nil
} else {
return 100, err
}
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
// Validation
if total_power == nil || task_monitor == nil {
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
}
total_allocated_power := 0.0
total_running_tasks := 0
for _, tasks := range task_monitor {
index := 0
for i, task := range tasks {
if task.TaskID == finished_taskId {
index = i
continue
}
total_allocated_power += float64(task.Watts) * constants.Cap_margin
total_running_tasks++
}
tasks = append(tasks[:index], tasks[index+1:]...)
}
average := total_allocated_power / float64(total_running_tasks)
ratios := []float64{}
for _, tpower := range total_power {
ratios = append(ratios, (average/tpower)*100)
}
sort.Float64s(ratios)
median, err := stats.Median(ratios)
if err == nil {
return median, nil
} else {
return 100, err
}
}
/* Quick sort algorithm to sort tasks, in place, in ascending order of power.*/
func (capper clusterwideCapper) quick_sort(low int, high int, tasks_to_sort []*def.Task) {
i := low
j := high
// calculating the pivot
pivot_index := low + (high - low)/2
pivot := tasks_to_sort[pivot_index]
for i <= j {
for tasks_to_sort[i].Watts < pivot.Watts {
i++
}
for tasks_to_sort[j].Watts > pivot.Watts {
j--
}
if i <= j {
temp := tasks_to_sort[i]
tasks_to_sort[i] = tasks_to_sort[j]
tasks_to_sort[j] = temp
i++
j--
}
}
if low < j {
capper.quick_sort(low, j, tasks_to_sort)
}
if i < high {
capper.quick_sort(i, high, tasks_to_sort)
}
i := low
j := high
// calculating the pivot
pivot_index := low + (high-low)/2
pivot := tasks_to_sort[pivot_index]
for i <= j {
for tasks_to_sort[i].Watts < pivot.Watts {
i++
}
for tasks_to_sort[j].Watts > pivot.Watts {
j--
}
if i <= j {
temp := tasks_to_sort[i]
tasks_to_sort[i] = tasks_to_sort[j]
tasks_to_sort[j] = temp
i++
j--
}
}
if low < j {
capper.quick_sort(low, j, tasks_to_sort)
}
if i < high {
capper.quick_sort(i, high, tasks_to_sort)
}
}
// Sorting tasks in ascending order of requested watts.
func (capper clusterwideCapper) sort_tasks(tasks_to_sort []*def.Task) {
capper.quick_sort(0, len(tasks_to_sort)-1, tasks_to_sort)
capper.quick_sort(0, len(tasks_to_sort)-1, tasks_to_sort)
}
/*
@ -195,86 +196,86 @@ This completed task needs to be removed from the window of tasks (if it is still
so that it doesn't contribute to the computation of the cap value.
*/
func (capper clusterwideCapper) taskFinished(taskID string) {
// If the window is empty the just return. This condition should technically return false.
if capper.window_of_tasks.Len() == 0 {
return
}
// If the window is empty the just return. This condition should technically return false.
if capper.window_of_tasks.Len() == 0 {
return
}
// Checking whether the task with the given taskID is currently present in the window of tasks.
var task_element_to_remove *list.Element
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
if tsk, ok := task_element.Value.(*def.Task); ok {
if tsk.TaskID == taskID {
task_element_to_remove = task_element
}
}
}
// Checking whether the task with the given taskID is currently present in the window of tasks.
var task_element_to_remove *list.Element
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
if tsk, ok := task_element.Value.(*def.Task); ok {
if tsk.TaskID == taskID {
task_element_to_remove = task_element
}
}
}
// Ee need to remove the task from the window.
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
capper.window_of_tasks.Remove(task_element_to_remove)
capper.number_of_tasks_in_window -= 1
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
}
// Ee need to remove the task from the window.
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
capper.window_of_tasks.Remove(task_element_to_remove)
capper.number_of_tasks_in_window -= 1
capper.current_sum -= float64(task_to_remove.Watts) * constants.Cap_margin
}
}
// Ranked based scheduling.
func (capper clusterwideCapper) rankedDetermineCap(available_power map[string]float64,
tasks_to_schedule []*def.Task) ([]*def.Task, map[int]float64, error) {
// Validation
if available_power == nil || len(tasks_to_schedule) == 0 {
return nil, nil, errors.New("Invalid argument: available_power, tasks_to_schedule")
} else {
// Need to sort the tasks in ascending order of requested power.
capper.sort_tasks(tasks_to_schedule)
tasks_to_schedule []*def.Task) ([]*def.Task, map[int]float64, error) {
// Validation
if available_power == nil || len(tasks_to_schedule) == 0 {
return nil, nil, errors.New("Invalid argument: available_power, tasks_to_schedule")
} else {
// Need to sort the tasks in ascending order of requested power.
capper.sort_tasks(tasks_to_schedule)
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
cluster_wide_cap_values := make(map[int]float64)
index := 0
for _, tsk := range tasks_to_schedule {
/*
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
Calling Fcfs_determine_cap(...) just to avoid redundant code.
*/
if cap, err := capper.fcfsDetermineCap(available_power, tsk); err == nil {
cluster_wide_cap_values[index] = cap
} else {
return nil, nil, err
}
index++
}
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
return tasks_to_schedule, cluster_wide_cap_values, nil
}
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
cluster_wide_cap_values := make(map[int]float64)
index := 0
for _, tsk := range tasks_to_schedule {
/*
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
Calling Fcfs_determine_cap(...) just to avoid redundant code.
*/
if cap, err := capper.fcfsDetermineCap(available_power, tsk); err == nil {
cluster_wide_cap_values[index] = cap
} else {
return nil, nil, err
}
index++
}
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
return tasks_to_schedule, cluster_wide_cap_values, nil
}
}
// First come first serve scheduling.
func (capper clusterwideCapper) fcfsDetermineCap(total_power map[string]float64,
new_task *def.Task) (float64, error) {
// Validation
if total_power == nil {
return 100, errors.New("Invalid argument: total_power")
} else {
// Need to calculate the running average
running_average := capper.running_average_of_watts(new_task)
// For each node, calculate the percentage of the running average to the total power.
running_average_to_total_power_percentage := make(map[string]float64)
for host, tpower := range total_power {
if tpower >= running_average {
running_average_to_total_power_percentage[host] = (running_average/tpower) * 100
} else {
// We don't consider this host for the computation of the cluster wide cap.
}
}
new_task *def.Task) (float64, error) {
// Validation
if total_power == nil {
return 100, errors.New("Invalid argument: total_power")
} else {
// Need to calculate the running average
running_average := capper.running_average_of_watts(new_task)
// For each node, calculate the percentage of the running average to the total power.
running_average_to_total_power_percentage := make(map[string]float64)
for host, tpower := range total_power {
if tpower >= running_average {
running_average_to_total_power_percentage[host] = (running_average / tpower) * 100
} else {
// We don't consider this host for the computation of the cluster wide cap.
}
}
// Determine the cluster wide cap value.
cap_value := capper.get_cap(running_average_to_total_power_percentage)
// Need to cap the cluster to this value.
return cap_value, nil
}
// Determine the cluster wide cap value.
cap_value := capper.get_cap(running_average_to_total_power_percentage)
// Need to cap the cluster to this value.
return cap_value, nil
}
}
// Stringer for an instance of clusterwideCapper
func (capper clusterwideCapper) string() string {
return "Cluster Capper -- Proactively cap the entire cluster."
return "Cluster Capper -- Proactively cap the entire cluster."
}