Unit testing for def/ module.

Added unit tests to test code in def/ module.
This commit is contained in:
Pradyumna Kaushik 2019-10-12 06:48:45 +00:00
parent e24b8a08c9
commit bac60e872a
396 changed files with 83991 additions and 13209 deletions

View file

@ -13,6 +13,15 @@ before_script:
- cd /elektron
- go mod download
unit_tests:
script:
- go test ./...
code_coverage:
script:
- go test --cover ./...
build:
script:
- go build -mod vendor -o elektron-from-vendor ## Testing build from vendored dependencies.
- go build -v -o elektron

View file

@ -0,0 +1,31 @@
// Copyright (C) 2018 spdf
//
// This file is part of Elektron.
//
// Elektron is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Elektron is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Elektron. If not, see <http://www.gnu.org/licenses/>.
//
package def
import (
"github.com/stretchr/testify/assert"
"testing"
)
func TestSortingCriteria(t *testing.T) {
task := &Task{CPU: 1.0, RAM: 1024.0, Watts: 50.0}
assert.Equal(t, 1.0, SortByCPU(task))
assert.Equal(t, 1024.0, SortByRAM(task))
assert.Equal(t, 50.0, SortByWatts(task))
}

136
def/taskUtils_test.go Normal file
View file

@ -0,0 +1,136 @@
// Copyright (C) 2018 spdf
//
// This file is part of Elektron.
//
// Elektron is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Elektron is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Elektron. If not, see <http://www.gnu.org/licenses/>.
//
package def
import (
"github.com/stretchr/testify/assert"
"testing"
)
var instances = 1
var tasks = []Task{
{
Name: "task1",
CPU: 4.0,
RAM: 1024,
Watts: 50.0,
TaskID: "electron-task1-1",
Instances: &instances,
},
{
Name: "task2",
CPU: 3.0,
RAM: 128,
Watts: 55.0,
TaskID: "electron-task2-1",
Instances: &instances,
},
{
Name: "task3",
CPU: 2.0,
RAM: 64,
Watts: 75.0,
TaskID: "electron-task3-1",
Instances: &instances,
},
{
Name: "task4",
CPU: 1.0,
RAM: 3072,
Watts: 81.0,
TaskID: "electron-task4-1",
Instances: &instances,
},
}
// Test task classification based on Watts requirement.
func TestClassifyTasks(t *testing.T) {
// Classifying tasks into two clusters.
taskClusters := ClassifyTasks(tasks, 2)
assert.True(t, len(taskClusters) == 2, "failed to classify tasks into 2 clusters")
// Test whether the clusters are ordered.
firstCluster := taskClusters[0]
secondCluster := taskClusters[1]
assert.Less(t, firstCluster.SizeScore, secondCluster.SizeScore, "failed to order task clusters")
// Tasks in the first cluster should be less power-intensive when compared to the tasks in the second cluster.
for _, taskFirstCluster := range firstCluster.Tasks {
for _, taskSecondCluster := range secondCluster.Tasks {
assert.LessOrEqual(t, taskFirstCluster.Watts,
taskSecondCluster.Watts, "failed to correctly classify tasks")
}
}
}
func TestSortTasks(t *testing.T) {
testSortedOrder := func(sortingCriteria string, sortedValues []float64, value func(i int) float64) {
assert.Equal(t, len(sortedValues), len(tasks))
for i := 0; i < len(tasks); i++ {
assert.Equal(t, sortedValues[i], value(i), "failed to sort tasks by "+sortingCriteria)
}
}
// Sorting by CPU.
SortTasks(tasks, SortByCPU)
testSortedOrder(
"CPU",
[]float64{1.0, 2.0, 3.0, 4.0},
func(i int) float64 {
return tasks[i].CPU
})
// Sorting by RAM.
SortTasks(tasks, SortByRAM)
testSortedOrder(
"RAM",
[]float64{64, 128, 1024, 3072},
func(i int) float64 {
return tasks[i].RAM
})
// Sorting by Watts.
SortTasks(tasks, SortByWatts)
testSortedOrder(
"Watts",
[]float64{50.0, 55.0, 75.0, 81.0},
func(i int) float64 {
return tasks[i].Watts
})
}
func TestGetResourceRequirement(t *testing.T) {
initTaskResourceRequirements(tasks)
for _, task := range tasks {
resources, err := GetResourceRequirement(task.TaskID)
assert.NoError(t, err)
assert.Equal(t, resources.CPU, task.CPU)
assert.Equal(t, resources.Ram, task.RAM)
assert.Equal(t, resources.Watts, task.Watts)
}
}
func TestGetTaskDistributionInWindow(t *testing.T) {
// Using a window of size 4.
taskDistribution, err := GetTaskDistributionInWindow(4, tasks)
assert.NoError(t, err)
// The tasks above are evenly distributed hence, task distribution should be 1.0.
assert.Equal(t, taskDistribution, 1.0, "task distribution determined is incorrect")
}

142
def/task_test.go Normal file
View file

@ -0,0 +1,142 @@
// Copyright (C) 2018 spdf
//
// This file is part of Elektron.
//
// Elektron is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Elektron is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Elektron. If not, see <http://www.gnu.org/licenses/>.
//
package def
import (
"fmt"
mesos "github.com/mesos/mesos-go/api/v0/mesosproto"
"github.com/stretchr/testify/assert"
"gitlab.com/spdf/elektron/constants"
"reflect"
"testing"
)
func TestTasksFromJSON(t *testing.T) {
tasks, err := TasksFromJSON("../workload_sample.json")
assert.Equal(t, len(tasks), 2)
assert.NoError(t, err)
instances := 10
minifeTask := Task{
Name: "minife",
CPU: 3.0,
RAM: 4096,
Watts: 63.141,
Image: "rdelvalle/minife:electron1",
CMD: "cd src && mpirun -np 3 miniFE.x -nx 100 -ny 100 -nz 100",
Instances: &instances,
ClassToWatts: map[string]float64{
"A": 93.062,
"B": 65.552,
"C": 57.897,
"D": 60.729,
},
}
dgemmTask := Task{
Name: "dgemm",
CPU: 3.0,
RAM: 32,
Watts: 85.903,
Image: "rdelvalle/dgemm:electron1",
CMD: "/./mt-dgemm 1024",
Instances: &instances,
ClassToWatts: map[string]float64{
"A": 114.789,
"B": 89.133,
"C": 82.672,
"D": 81.944,
},
}
assert.True(t, reflect.DeepEqual(minifeTask, tasks[0]))
assert.True(t, reflect.DeepEqual(dgemmTask, tasks[1]))
}
func TestTask_UpdateHost(t *testing.T) {
task := Task{}
// UpdateHost should fail if the host is unknown.
assert.False(t, task.UpdateHost("unknown-host"))
constants.Hosts["known-host"] = struct{}{}
// UpdateHost should not succeed as hostname (known-host) is known.
task.UpdateHost("known-host")
assert.Equal(t, task.Host, "known-host")
}
func TestTask_SetTaskID(t *testing.T) {
instances := 1
task := Task{
Name: "test-task",
Instances: &instances,
}
taskID := fmt.Sprintf("electron-%s-%d", task.Name, *task.Instances)
task.SetTaskID(taskID)
assert.Equal(t, taskID, task.TaskID, "failed to set task ID")
}
func TestWattsToConsider(t *testing.T) {
task := Task{
Name: "minife",
Watts: 50.0,
ClassToWatts: map[string]float64{
"A": 30.2475289996,
"B": 35.6491229228,
"C": 24.0476734352,
},
}
powerClass := "A"
classAttribute := "class"
offerClassA := &mesos.Offer{
Attributes: []*mesos.Attribute{
{
Name: &classAttribute,
Text: &mesos.Value_Text{Value: &powerClass},
},
},
}
// Without class to watts mapping.
// Should return the Watts value.
wattsClassMapWattsDisabled, err := WattsToConsider(task, false, offerClassA)
assert.NoError(t, err)
assert.Equal(t, task.Watts, wattsClassMapWattsDisabled)
// with class to watts mapping.
// Should return task.ClassToWatts[pc] where pc is the power-class
// of the host corresponding to the offer.
wattsClassMapWattsEnabled, err := WattsToConsider(task, true, offerClassA)
assert.NoError(t, err)
assert.Equal(t, task.ClassToWatts["A"], wattsClassMapWattsEnabled)
}
func TestCompare(t *testing.T) {
task1 := Task{
Name: "test-task1",
TaskID: "electron-test-task1-1",
}
task2 := Task{
TaskID: "electron-test-task1-1",
}
// If two tasks have the same Task ID they should be the same task.
assert.True(t, Compare(&task1, &task2))
}

2
go.mod
View file

@ -15,6 +15,6 @@ require (
github.com/pborman/uuid v1.2.0 // indirect
github.com/pkg/errors v0.8.1
github.com/samuel/go-zookeeper v0.0.0-20190923202752-2cc03de413da // indirect
github.com/stretchr/testify v1.4.0 // indirect
github.com/stretchr/testify v1.4.0
golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad
)

15
vendor/github.com/davecgh/go-spew/LICENSE generated vendored Normal file
View file

@ -0,0 +1,15 @@
ISC License
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

152
vendor/github.com/davecgh/go-spew/spew/bypass.go generated vendored Normal file
View file

@ -0,0 +1,152 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine, compiled by GopherJS, and
// "-tags safe" is not added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build !js,!appengine,!safe,!disableunsafe
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = uintptr(ptrSize)
offsetScalar = uintptr(0)
offsetFlag = uintptr(ptrSize * 2)
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = uintptr(flagKindWidth - 1)
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
// Commit adf9b30e5594 modified the flags to separate the
// flagRO flag into two bits which specifies whether or not the
// field is embedded. This causes flagIndir to move over a bit
// and means that flagRO is the combination of either of the
// original flagRO bit and the new bit.
//
// This code detects the change by extracting what used to be
// the indirect bit to ensure it's set. When it's not, the flag
// order has been changed to the newer format, so the flags are
// updated accordingly.
if upfv&flagIndir == 0 {
flagRO = 3 << 5
flagIndir = 1 << 7
}
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}

38
vendor/github.com/davecgh/go-spew/spew/bypasssafe.go generated vendored Normal file
View file

@ -0,0 +1,38 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is running on Google App Engine, compiled by GopherJS, or
// "-tags safe" is added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build js appengine safe disableunsafe
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

341
vendor/github.com/davecgh/go-spew/spew/common.go generated vendored Normal file
View file

@ -0,0 +1,341 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

306
vendor/github.com/davecgh/go-spew/spew/config.go generated vendored Normal file
View file

@ -0,0 +1,306 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "safe" build tag specified.
DisablePointerMethods bool
// DisablePointerAddresses specifies whether to disable the printing of
// pointer addresses. This is useful when diffing data structures in tests.
DisablePointerAddresses bool
// DisableCapacities specifies whether to disable the printing of capacities
// for arrays, slices, maps and channels. This is useful when diffing
// data structures in tests.
DisableCapacities bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

211
vendor/github.com/davecgh/go-spew/spew/doc.go generated vendored Normal file
View file

@ -0,0 +1,211 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of
capacities for arrays, slices, maps and channels. This is useful when
diffing data structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

509
vendor/github.com/davecgh/go-spew/spew/dump.go generated vendored Normal file
View file

@ -0,0 +1,509 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound == true:
d.w.Write(nilAngleBytes)
case cycleFound == true:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if !d.cs.DisableCapacities && valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

419
vendor/github.com/davecgh/go-spew/spew/format.go generated vendored Normal file
View file

@ -0,0 +1,419 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound == true:
f.fs.Write(nilAngleBytes)
case cycleFound == true:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

148
vendor/github.com/davecgh/go-spew/spew/spew.go generated vendored Normal file
View file

@ -0,0 +1,148 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

View file

@ -1,5 +0,0 @@
The contributors to the Go protobuf repository:
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

View file

@ -1,7 +1,6 @@
Protocol Buffers for Go with Gadgets
Copyright (c) 2013, The GoGo Authors. All rights reserved.
http://github.com/gogo/protobuf
Protocol Buffers for Go with Gadgets
Go support for Protocol Buffers - Google's data interchange format

View file

@ -186,7 +186,6 @@ func (p *Buffer) DecodeVarint() (x uint64, err error) {
if b&0x80 == 0 {
goto done
}
// x -= 0x80 << 63 // Always zero.
return 0, errOverflow

63
vendor/github.com/gogo/protobuf/proto/deprecated.go generated vendored Normal file
View file

@ -0,0 +1,63 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2018 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import "errors"
// Deprecated: do not use.
type Stats struct{ Emalloc, Dmalloc, Encode, Decode, Chit, Cmiss, Size uint64 }
// Deprecated: do not use.
func GetStats() Stats { return Stats{} }
// Deprecated: do not use.
func MarshalMessageSet(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSet([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func MarshalMessageSetJSON(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSetJSON([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func RegisterMessageSetType(Message, int32, string) {}

View file

@ -37,27 +37,9 @@ package proto
import (
"errors"
"fmt"
"reflect"
)
// RequiredNotSetError is the error returned if Marshal is called with
// a protocol buffer struct whose required fields have not
// all been initialized. It is also the error returned if Unmarshal is
// called with an encoded protocol buffer that does not include all the
// required fields.
//
// When printed, RequiredNotSetError reports the first unset required field in a
// message. If the field cannot be precisely determined, it is reported as
// "{Unknown}".
type RequiredNotSetError struct {
field string
}
func (e *RequiredNotSetError) Error() string {
return fmt.Sprintf("proto: required field %q not set", e.field)
}
var (
// errRepeatedHasNil is the error returned if Marshal is called with
// a struct with a repeated field containing a nil element.

View file

@ -527,6 +527,7 @@ func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
// SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {
if epb, ok := pb.(extensionsBytes); ok {
ClearExtension(pb, extension)
newb, err := encodeExtension(extension, value)
if err != nil {
return err
@ -544,7 +545,7 @@ func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error
}
typ := reflect.TypeOf(extension.ExtensionType)
if typ != reflect.TypeOf(value) {
return errors.New("proto: bad extension value type")
return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", value, extension.ExtensionType)
}
// nil extension values need to be caught early, because the
// encoder can't distinguish an ErrNil due to a nil extension

View file

@ -154,6 +154,10 @@ func EncodeInternalExtension(m extendableProto, data []byte) (n int, err error)
return EncodeExtensionMap(m.extensionsWrite(), data)
}
func EncodeInternalExtensionBackwards(m extendableProto, data []byte) (n int, err error) {
return EncodeExtensionMapBackwards(m.extensionsWrite(), data)
}
func EncodeExtensionMap(m map[int32]Extension, data []byte) (n int, err error) {
o := 0
for _, e := range m {
@ -169,6 +173,23 @@ func EncodeExtensionMap(m map[int32]Extension, data []byte) (n int, err error) {
return o, nil
}
func EncodeExtensionMapBackwards(m map[int32]Extension, data []byte) (n int, err error) {
o := 0
end := len(data)
for _, e := range m {
if err := e.Encode(); err != nil {
return 0, err
}
n := copy(data[end-len(e.enc):], e.enc)
if n != len(e.enc) {
return 0, io.ErrShortBuffer
}
end -= n
o += n
}
return o, nil
}
func GetRawExtension(m map[int32]Extension, id int32) ([]byte, error) {
e := m[id]
if err := e.Encode(); err != nil {

View file

@ -265,7 +265,6 @@ package proto
import (
"encoding/json"
"errors"
"fmt"
"log"
"reflect"
@ -274,7 +273,66 @@ import (
"sync"
)
var errInvalidUTF8 = errors.New("proto: invalid UTF-8 string")
// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
// Marshal reports this when a required field is not initialized.
// Unmarshal reports this when a required field is missing from the wire data.
type RequiredNotSetError struct{ field string }
func (e *RequiredNotSetError) Error() string {
if e.field == "" {
return fmt.Sprintf("proto: required field not set")
}
return fmt.Sprintf("proto: required field %q not set", e.field)
}
func (e *RequiredNotSetError) RequiredNotSet() bool {
return true
}
type invalidUTF8Error struct{ field string }
func (e *invalidUTF8Error) Error() string {
if e.field == "" {
return "proto: invalid UTF-8 detected"
}
return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
}
func (e *invalidUTF8Error) InvalidUTF8() bool {
return true
}
// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
// This error should not be exposed to the external API as such errors should
// be recreated with the field information.
var errInvalidUTF8 = &invalidUTF8Error{}
// isNonFatal reports whether the error is either a RequiredNotSet error
// or a InvalidUTF8 error.
func isNonFatal(err error) bool {
if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
return true
}
if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
return true
}
return false
}
type nonFatal struct{ E error }
// Merge merges err into nf and reports whether it was successful.
// Otherwise it returns false for any fatal non-nil errors.
func (nf *nonFatal) Merge(err error) (ok bool) {
if err == nil {
return true // not an error
}
if !isNonFatal(err) {
return false // fatal error
}
if nf.E == nil {
nf.E = err // store first instance of non-fatal error
}
return true
}
// Message is implemented by generated protocol buffer messages.
type Message interface {
@ -283,26 +341,6 @@ type Message interface {
ProtoMessage()
}
// Stats records allocation details about the protocol buffer encoders
// and decoders. Useful for tuning the library itself.
type Stats struct {
Emalloc uint64 // mallocs in encode
Dmalloc uint64 // mallocs in decode
Encode uint64 // number of encodes
Decode uint64 // number of decodes
Chit uint64 // number of cache hits
Cmiss uint64 // number of cache misses
Size uint64 // number of sizes
}
// Set to true to enable stats collection.
const collectStats = false
var stats Stats
// GetStats returns a copy of the global Stats structure.
func GetStats() Stats { return stats }
// A Buffer is a buffer manager for marshaling and unmarshaling
// protocol buffers. It may be reused between invocations to
// reduce memory usage. It is not necessary to use a Buffer;
@ -570,9 +608,11 @@ func SetDefaults(pb Message) {
setDefaults(reflect.ValueOf(pb), true, false)
}
// v is a pointer to a struct.
// v is a struct.
func setDefaults(v reflect.Value, recur, zeros bool) {
v = v.Elem()
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
defaultMu.RLock()
dm, ok := defaults[v.Type()]
@ -674,8 +714,11 @@ func setDefaults(v reflect.Value, recur, zeros bool) {
for _, ni := range dm.nested {
f := v.Field(ni)
// f is *T or []*T or map[T]*T
// f is *T or T or []*T or []T
switch f.Kind() {
case reflect.Struct:
setDefaults(f, recur, zeros)
case reflect.Ptr:
if f.IsNil() {
continue
@ -685,7 +728,7 @@ func setDefaults(v reflect.Value, recur, zeros bool) {
case reflect.Slice:
for i := 0; i < f.Len(); i++ {
e := f.Index(i)
if e.IsNil() {
if e.Kind() == reflect.Ptr && e.IsNil() {
continue
}
setDefaults(e, recur, zeros)
@ -757,6 +800,9 @@ func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
var canHaveDefault bool
switch ft.Kind() {
case reflect.Struct:
nestedMessage = true // non-nullable
case reflect.Ptr:
if ft.Elem().Kind() == reflect.Struct {
nestedMessage = true
@ -766,7 +812,7 @@ func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMes
case reflect.Slice:
switch ft.Elem().Kind() {
case reflect.Ptr:
case reflect.Ptr, reflect.Struct:
nestedMessage = true // repeated message
case reflect.Uint8:
canHaveDefault = true // bytes field
@ -902,13 +948,19 @@ func isProto3Zero(v reflect.Value) bool {
return false
}
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const GoGoProtoPackageIsVersion2 = true
const (
// ProtoPackageIsVersion3 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion3 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const GoGoProtoPackageIsVersion1 = true
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
GoGoProtoPackageIsVersion1 = true
)
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.

View file

@ -36,13 +36,7 @@ package proto
*/
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"reflect"
"sort"
"sync"
)
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
@ -145,46 +139,9 @@ func skipVarint(buf []byte) []byte {
return buf[i+1:]
}
// MarshalMessageSet encodes the extension map represented by m in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(exts interface{}) ([]byte, error) {
return marshalMessageSet(exts, false)
}
// marshaMessageSet implements above function, with the opt to turn on / off deterministic during Marshal.
func marshalMessageSet(exts interface{}, deterministic bool) ([]byte, error) {
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var u marshalInfo
siz := u.sizeMessageSet(exts)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, exts, deterministic)
case map[int32]Extension:
// This is an old-style extension map.
// Wrap it in a new-style XXX_InternalExtensions.
ie := XXX_InternalExtensions{
p: &struct {
mu sync.Mutex
extensionMap map[int32]Extension
}{
extensionMap: exts,
},
}
var u marshalInfo
siz := u.sizeMessageSet(&ie)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, &ie, deterministic)
default:
return nil, errors.New("proto: not an extension map")
}
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// unmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, exts interface{}) error {
func unmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
@ -222,93 +179,3 @@ func UnmarshalMessageSet(buf []byte, exts interface{}) error {
}
return nil
}
// MarshalMessageSetJSON encodes the extension map represented by m in JSON format.
// It is called by generated MarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var mu sync.Locker
m, mu = exts.extensionsRead()
if m != nil {
// Keep the extensions map locked until we're done marshaling to prevent
// races between marshaling and unmarshaling the lazily-{en,de}coded
// values.
mu.Lock()
defer mu.Unlock()
}
case map[int32]Extension:
m = exts
default:
return nil, errors.New("proto: not an extension map")
}
var b bytes.Buffer
b.WriteByte('{')
// Process the map in key order for deterministic output.
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids)) // int32Slice defined in text.go
for i, id := range ids {
ext := m[id]
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
if i > 0 && b.Len() > 1 {
b.WriteByte(',')
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value
if x == nil {
x = reflect.New(msd.t.Elem()).Interface()
if err := Unmarshal(ext.enc, x.(Message)); err != nil {
return nil, err
}
}
d, err := json.Marshal(x)
if err != nil {
return nil, err
}
b.Write(d)
}
b.WriteByte('}')
return b.Bytes(), nil
}
// UnmarshalMessageSetJSON decodes the extension map encoded in buf in JSON format.
// It is called by generated UnmarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSetJSON(buf []byte, exts interface{}) error {
// Common-case fast path.
if len(buf) == 0 || bytes.Equal(buf, []byte("{}")) {
return nil
}
// This is fairly tricky, and it's not clear that it is needed.
return errors.New("TODO: UnmarshalMessageSetJSON not yet implemented")
}
// A global registry of types that can be used in a MessageSet.
var messageSetMap = make(map[int32]messageSetDesc)
type messageSetDesc struct {
t reflect.Type // pointer to struct
name string
}
// RegisterMessageSetType is called from the generated code.
func RegisterMessageSetType(m Message, fieldNum int32, name string) {
messageSetMap[fieldNum] = messageSetDesc{
t: reflect.TypeOf(m),
name: name,
}
}

View file

@ -26,7 +26,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !purego !appengine,!js
// +build !purego,!appengine,!js
// This file contains the implementation of the proto field accesses using package unsafe.

View file

@ -144,7 +144,7 @@ type Properties struct {
Repeated bool
Packed bool // relevant for repeated primitives only
Enum string // set for enum types only
proto3 bool // whether this is known to be a proto3 field; set for []byte only
proto3 bool // whether this is known to be a proto3 field
oneof bool // whether this is a oneof field
Default string // default value
@ -153,14 +153,15 @@ type Properties struct {
CastType string
StdTime bool
StdDuration bool
WktPointer bool
stype reflect.Type // set for struct types only
ctype reflect.Type // set for custom types only
sprop *StructProperties // set for struct types only
mtype reflect.Type // set for map types only
mkeyprop *Properties // set for map types only
mvalprop *Properties // set for map types only
mtype reflect.Type // set for map types only
MapKeyProp *Properties // set for map types only
MapValProp *Properties // set for map types only
}
// String formats the properties in the protobuf struct field tag style.
@ -274,6 +275,8 @@ outer:
p.StdTime = true
case f == "stdduration":
p.StdDuration = true
case f == "wktptr":
p.WktPointer = true
}
}
}
@ -296,6 +299,10 @@ func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, loc
p.setTag(lockGetProp)
return
}
if p.WktPointer && !isMap {
p.setTag(lockGetProp)
return
}
switch t1 := typ; t1.Kind() {
case reflect.Struct:
p.stype = typ
@ -317,9 +324,9 @@ func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, loc
case reflect.Map:
p.mtype = t1
p.mkeyprop = &Properties{}
p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.mvalprop = &Properties{}
p.MapKeyProp = &Properties{}
p.MapKeyProp.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.MapValProp = &Properties{}
vtype := p.mtype.Elem()
if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice {
// The value type is not a message (*T) or bytes ([]byte),
@ -327,10 +334,11 @@ func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, loc
vtype = reflect.PtrTo(vtype)
}
p.mvalprop.CustomType = p.CustomType
p.mvalprop.StdDuration = p.StdDuration
p.mvalprop.StdTime = p.StdTime
p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
p.MapValProp.CustomType = p.CustomType
p.MapValProp.StdDuration = p.StdDuration
p.MapValProp.StdTime = p.StdTime
p.MapValProp.WktPointer = p.WktPointer
p.MapValProp.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
}
p.setTag(lockGetProp)
}
@ -383,9 +391,6 @@ func GetProperties(t reflect.Type) *StructProperties {
sprop, ok := propertiesMap[t]
propertiesMu.RUnlock()
if ok {
if collectStats {
stats.Chit++
}
return sprop
}
@ -395,17 +400,20 @@ func GetProperties(t reflect.Type) *StructProperties {
return sprop
}
type (
oneofFuncsIface interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
oneofWrappersIface interface {
XXX_OneofWrappers() []interface{}
}
)
// getPropertiesLocked requires that propertiesMu is held.
func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok {
if collectStats {
stats.Chit++
}
return prop
}
if collectStats {
stats.Cmiss++
}
prop := new(StructProperties)
// in case of recursive protos, fill this in now.
@ -442,37 +450,40 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
// Re-order prop.order.
sort.Sort(prop)
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); isOneofMessage && ok {
if isOneofMessage {
var oots []interface{}
_, _, _, oots = om.XXX_OneofFuncs()
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots {
oop := &OneofProperties{
Type: reflect.ValueOf(oot).Type(), // *T
Prop: new(Properties),
}
sft := oop.Type.Elem().Field(0)
oop.Prop.Name = sft.Name
oop.Prop.Parse(sft.Tag.Get("protobuf"))
// There will be exactly one interface field that
// this new value is assignable to.
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if f.Type.Kind() != reflect.Interface {
continue
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oots = m.XXX_OneofFuncs()
case oneofWrappersIface:
oots = m.XXX_OneofWrappers()
}
if len(oots) > 0 {
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots {
oop := &OneofProperties{
Type: reflect.ValueOf(oot).Type(), // *T
Prop: new(Properties),
}
if !oop.Type.AssignableTo(f.Type) {
continue
sft := oop.Type.Elem().Field(0)
oop.Prop.Name = sft.Name
oop.Prop.Parse(sft.Tag.Get("protobuf"))
// There will be exactly one interface field that
// this new value is assignable to.
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if f.Type.Kind() != reflect.Interface {
continue
}
if !oop.Type.AssignableTo(f.Type) {
continue
}
oop.Field = i
break
}
oop.Field = i
break
prop.OneofTypes[oop.Prop.OrigName] = oop
}
prop.OneofTypes[oop.Prop.OrigName] = oop
}
}

View file

@ -97,6 +97,8 @@ type marshalElemInfo struct {
var (
marshalInfoMap = map[reflect.Type]*marshalInfo{}
marshalInfoLock sync.Mutex
uint8SliceType = reflect.TypeOf(([]uint8)(nil)).Kind()
)
// getMarshalInfo returns the information to marshal a given type of message.
@ -246,16 +248,13 @@ func (u *marshalInfo) marshal(b []byte, ptr pointer, deterministic bool) ([]byte
// If the message can marshal itself, let it do it, for compatibility.
// NOTE: This is not efficient.
if u.hasmarshaler {
if deterministic {
return nil, errors.New("proto: deterministic not supported by the Marshal method of " + u.typ.String())
}
m := ptr.asPointerTo(u.typ).Interface().(Marshaler)
b1, err := m.Marshal()
b = append(b, b1...)
return b, err
}
var err, errreq error
var err, errLater error
// The old marshaler encodes extensions at beginning.
if u.extensions.IsValid() {
e := ptr.offset(u.extensions).toExtensions()
@ -280,11 +279,13 @@ func (u *marshalInfo) marshal(b []byte, ptr pointer, deterministic bool) ([]byte
b = append(b, s...)
}
for _, f := range u.fields {
if f.required && errreq == nil {
if ptr.offset(f.field).getPointer().isNil() {
if f.required {
if f.isPointer && ptr.offset(f.field).getPointer().isNil() {
// Required field is not set.
// We record the error but keep going, to give a complete marshaling.
errreq = &RequiredNotSetError{f.name}
if errLater == nil {
errLater = &RequiredNotSetError{f.name}
}
continue
}
}
@ -297,14 +298,21 @@ func (u *marshalInfo) marshal(b []byte, ptr pointer, deterministic bool) ([]byte
if err1, ok := err.(*RequiredNotSetError); ok {
// Required field in submessage is not set.
// We record the error but keep going, to give a complete marshaling.
if errreq == nil {
errreq = &RequiredNotSetError{f.name + "." + err1.field}
if errLater == nil {
errLater = &RequiredNotSetError{f.name + "." + err1.field}
}
continue
}
if err == errRepeatedHasNil {
err = errors.New("proto: repeated field " + f.name + " has nil element")
}
if err == errInvalidUTF8 {
if errLater == nil {
fullName := revProtoTypes[reflect.PtrTo(u.typ)] + "." + f.name
errLater = &invalidUTF8Error{fullName}
}
continue
}
return b, err
}
}
@ -312,7 +320,7 @@ func (u *marshalInfo) marshal(b []byte, ptr pointer, deterministic bool) ([]byte
s := *ptr.offset(u.unrecognized).toBytes()
b = append(b, s...)
}
return b, errreq
return b, errLater
}
// computeMarshalInfo initializes the marshal info.
@ -381,8 +389,13 @@ func (u *marshalInfo) computeMarshalInfo() {
// get oneof implementers
var oneofImplementers []interface{}
// gogo: isOneofMessage is needed for embedded oneof messages, without a marshaler and unmarshaler
if m, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok && isOneofMessage {
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
if isOneofMessage {
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
}
// normal fields
@ -483,7 +496,7 @@ func (fi *marshalFieldInfo) computeMarshalFieldInfo(f *reflect.StructField) {
func (fi *marshalFieldInfo) computeOneofFieldInfo(f *reflect.StructField, oneofImplementers []interface{}) {
fi.field = toField(f)
fi.wiretag = 1<<31 - 1 // Use a large tag number, make oneofs sorted at the end. This tag will not appear on the wire.
fi.wiretag = math.MaxInt32 // Use a large tag number, make oneofs sorted at the end. This tag will not appear on the wire.
fi.isPointer = true
fi.sizer, fi.marshaler = makeOneOfMarshaler(fi, f)
fi.oneofElems = make(map[reflect.Type]*marshalElemInfo)
@ -511,10 +524,6 @@ func (fi *marshalFieldInfo) computeOneofFieldInfo(f *reflect.StructField, oneofI
}
}
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
// wiretype returns the wire encoding of the type.
func wiretype(encoding string) uint64 {
switch encoding {
@ -577,6 +586,8 @@ func typeMarshaler(t reflect.Type, tags []string, nozero, oneof bool) (sizer, ma
ctype := false
isTime := false
isDuration := false
isWktPointer := false
validateUTF8 := true
for i := 2; i < len(tags); i++ {
if tags[i] == "packed" {
packed = true
@ -593,7 +604,11 @@ func typeMarshaler(t reflect.Type, tags []string, nozero, oneof bool) (sizer, ma
if tags[i] == "stdduration" {
isDuration = true
}
if tags[i] == "wktptr" {
isWktPointer = true
}
}
validateUTF8 = validateUTF8 && proto3
if !proto3 && !pointer && !slice {
nozero = false
}
@ -638,6 +653,112 @@ func typeMarshaler(t reflect.Type, tags []string, nozero, oneof bool) (sizer, ma
return makeDurationMarshaler(getMarshalInfo(t))
}
if isWktPointer {
switch t.Kind() {
case reflect.Float64:
if pointer {
if slice {
return makeStdDoubleValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdDoubleValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdDoubleValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdDoubleValueMarshaler(getMarshalInfo(t))
case reflect.Float32:
if pointer {
if slice {
return makeStdFloatValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdFloatValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdFloatValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdFloatValueMarshaler(getMarshalInfo(t))
case reflect.Int64:
if pointer {
if slice {
return makeStdInt64ValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdInt64ValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdInt64ValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdInt64ValueMarshaler(getMarshalInfo(t))
case reflect.Uint64:
if pointer {
if slice {
return makeStdUInt64ValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdUInt64ValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdUInt64ValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdUInt64ValueMarshaler(getMarshalInfo(t))
case reflect.Int32:
if pointer {
if slice {
return makeStdInt32ValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdInt32ValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdInt32ValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdInt32ValueMarshaler(getMarshalInfo(t))
case reflect.Uint32:
if pointer {
if slice {
return makeStdUInt32ValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdUInt32ValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdUInt32ValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdUInt32ValueMarshaler(getMarshalInfo(t))
case reflect.Bool:
if pointer {
if slice {
return makeStdBoolValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdBoolValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdBoolValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdBoolValueMarshaler(getMarshalInfo(t))
case reflect.String:
if pointer {
if slice {
return makeStdStringValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdStringValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdStringValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdStringValueMarshaler(getMarshalInfo(t))
case uint8SliceType:
if pointer {
if slice {
return makeStdBytesValuePtrSliceMarshaler(getMarshalInfo(t))
}
return makeStdBytesValuePtrMarshaler(getMarshalInfo(t))
}
if slice {
return makeStdBytesValueSliceMarshaler(getMarshalInfo(t))
}
return makeStdBytesValueMarshaler(getMarshalInfo(t))
default:
panic(fmt.Sprintf("unknown wktpointer type %#v", t))
}
}
switch t.Kind() {
case reflect.Bool:
if pointer {
@ -834,6 +955,18 @@ func typeMarshaler(t reflect.Type, tags []string, nozero, oneof bool) (sizer, ma
}
return sizeFloat64Value, appendFloat64Value
case reflect.String:
if validateUTF8 {
if pointer {
return sizeStringPtr, appendUTF8StringPtr
}
if slice {
return sizeStringSlice, appendUTF8StringSlice
}
if nozero {
return sizeStringValueNoZero, appendUTF8StringValueNoZero
}
return sizeStringValue, appendUTF8StringValue
}
if pointer {
return sizeStringPtr, appendStringPtr
}
@ -2090,9 +2223,6 @@ func appendBoolPackedSlice(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byt
}
func appendStringValue(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
v := *ptr.toString()
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
@ -2103,9 +2233,6 @@ func appendStringValueNoZero(b []byte, ptr pointer, wiretag uint64, _ bool) ([]b
if v == "" {
return b, nil
}
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
@ -2117,24 +2244,83 @@ func appendStringPtr(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, err
return b, nil
}
v := *p
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
return b, nil
}
func appendStringSlice(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
s := *ptr.toStringSlice()
for _, v := range s {
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
}
return b, nil
}
func appendUTF8StringValue(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
var invalidUTF8 bool
v := *ptr.toString()
if !utf8.ValidString(v) {
invalidUTF8 = true
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
if invalidUTF8 {
return b, errInvalidUTF8
}
return b, nil
}
func appendUTF8StringValueNoZero(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
var invalidUTF8 bool
v := *ptr.toString()
if v == "" {
return b, nil
}
if !utf8.ValidString(v) {
invalidUTF8 = true
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
if invalidUTF8 {
return b, errInvalidUTF8
}
return b, nil
}
func appendUTF8StringPtr(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
var invalidUTF8 bool
p := *ptr.toStringPtr()
if p == nil {
return b, nil
}
v := *p
if !utf8.ValidString(v) {
invalidUTF8 = true
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
if invalidUTF8 {
return b, errInvalidUTF8
}
return b, nil
}
func appendUTF8StringSlice(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
var invalidUTF8 bool
s := *ptr.toStringSlice()
for _, v := range s {
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
invalidUTF8 = true
}
b = appendVarint(b, wiretag)
b = appendVarint(b, uint64(len(v)))
b = append(b, v...)
}
if invalidUTF8 {
return b, errInvalidUTF8
}
return b, nil
}
func appendBytes(b []byte, ptr pointer, wiretag uint64, _ bool) ([]byte, error) {
@ -2213,7 +2399,8 @@ func makeGroupSliceMarshaler(u *marshalInfo) (sizer, marshaler) {
},
func(b []byte, ptr pointer, wiretag uint64, deterministic bool) ([]byte, error) {
s := ptr.getPointerSlice()
var err, errreq error
var err error
var nerr nonFatal
for _, v := range s {
if v.isNil() {
return b, errRepeatedHasNil
@ -2221,22 +2408,14 @@ func makeGroupSliceMarshaler(u *marshalInfo) (sizer, marshaler) {
b = appendVarint(b, wiretag) // start group
b, err = u.marshal(b, v, deterministic)
b = appendVarint(b, wiretag+(WireEndGroup-WireStartGroup)) // end group
if err != nil {
if _, ok := err.(*RequiredNotSetError); ok {
// Required field in submessage is not set.
// We record the error but keep going, to give a complete marshaling.
if errreq == nil {
errreq = err
}
continue
}
if !nerr.Merge(err) {
if err == ErrNil {
err = errRepeatedHasNil
}
return b, err
}
}
return b, errreq
return b, nerr.E
}
}
@ -2280,7 +2459,8 @@ func makeMessageSliceMarshaler(u *marshalInfo) (sizer, marshaler) {
},
func(b []byte, ptr pointer, wiretag uint64, deterministic bool) ([]byte, error) {
s := ptr.getPointerSlice()
var err, errreq error
var err error
var nerr nonFatal
for _, v := range s {
if v.isNil() {
return b, errRepeatedHasNil
@ -2289,22 +2469,15 @@ func makeMessageSliceMarshaler(u *marshalInfo) (sizer, marshaler) {
siz := u.cachedsize(v)
b = appendVarint(b, uint64(siz))
b, err = u.marshal(b, v, deterministic)
if err != nil {
if _, ok := err.(*RequiredNotSetError); ok {
// Required field in submessage is not set.
// We record the error but keep going, to give a complete marshaling.
if errreq == nil {
errreq = err
}
continue
}
if !nerr.Merge(err) {
if err == ErrNil {
err = errRepeatedHasNil
}
return b, err
}
}
return b, errreq
return b, nerr.E
}
}
@ -2318,15 +2491,21 @@ func makeMapMarshaler(f *reflect.StructField) (sizer, marshaler) {
tags := strings.Split(f.Tag.Get("protobuf"), ",")
keyTags := strings.Split(f.Tag.Get("protobuf_key"), ",")
valTags := strings.Split(f.Tag.Get("protobuf_val"), ",")
stdOptions := false
for _, t := range tags {
if strings.HasPrefix(t, "customtype=") {
valTags = append(valTags, t)
}
if t == "stdtime" {
valTags = append(valTags, t)
stdOptions = true
}
if t == "stdduration" {
valTags = append(valTags, t)
stdOptions = true
}
if t == "wktptr" {
valTags = append(valTags, t)
}
}
keySizer, keyMarshaler := typeMarshaler(keyType, keyTags, false, false) // don't omit zero value in map
@ -2340,6 +2519,25 @@ func makeMapMarshaler(f *reflect.StructField) (sizer, marshaler) {
// value.
// Key cannot be pointer-typed.
valIsPtr := valType.Kind() == reflect.Ptr
// If value is a message with nested maps, calling
// valSizer in marshal may be quadratic. We should use
// cached version in marshal (but not in size).
// If value is not message type, we don't have size cache,
// but it cannot be nested either. Just use valSizer.
valCachedSizer := valSizer
if valIsPtr && !stdOptions && valType.Elem().Kind() == reflect.Struct {
u := getMarshalInfo(valType.Elem())
valCachedSizer = func(ptr pointer, tagsize int) int {
// Same as message sizer, but use cache.
p := ptr.getPointer()
if p.isNil() {
return 0
}
siz := u.cachedsize(p)
return siz + SizeVarint(uint64(siz)) + tagsize
}
}
return func(ptr pointer, tagsize int) int {
m := ptr.asPointerTo(t).Elem() // the map
n := 0
@ -2360,24 +2558,26 @@ func makeMapMarshaler(f *reflect.StructField) (sizer, marshaler) {
if len(keys) > 1 && deterministic {
sort.Sort(mapKeys(keys))
}
var nerr nonFatal
for _, k := range keys {
ki := k.Interface()
vi := m.MapIndex(k).Interface()
kaddr := toAddrPointer(&ki, false) // pointer to key
vaddr := toAddrPointer(&vi, valIsPtr) // pointer to value
b = appendVarint(b, tag)
siz := keySizer(kaddr, 1) + valSizer(vaddr, 1) // tag of key = 1 (size=1), tag of val = 2 (size=1)
siz := keySizer(kaddr, 1) + valCachedSizer(vaddr, 1) // tag of key = 1 (size=1), tag of val = 2 (size=1)
b = appendVarint(b, uint64(siz))
b, err = keyMarshaler(b, kaddr, keyWireTag, deterministic)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
b, err = valMarshaler(b, vaddr, valWireTag, deterministic)
if err != nil && err != ErrNil { // allow nil value in map
if err != ErrNil && !nerr.Merge(err) { // allow nil value in map
return b, err
}
}
return b, nil
return b, nerr.E
}
}
@ -2450,6 +2650,7 @@ func (u *marshalInfo) appendExtensions(b []byte, ext *XXX_InternalExtensions, de
defer mu.Unlock()
var err error
var nerr nonFatal
// Fast-path for common cases: zero or one extensions.
// Don't bother sorting the keys.
@ -2469,11 +2670,11 @@ func (u *marshalInfo) appendExtensions(b []byte, ext *XXX_InternalExtensions, de
v := e.value
p := toAddrPointer(&v, ei.isptr)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
}
return b, nil
return b, nerr.E
}
// Sort the keys to provide a deterministic encoding.
@ -2500,11 +2701,11 @@ func (u *marshalInfo) appendExtensions(b []byte, ext *XXX_InternalExtensions, de
v := e.value
p := toAddrPointer(&v, ei.isptr)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
}
return b, nil
return b, nerr.E
}
// message set format is:
@ -2561,6 +2762,7 @@ func (u *marshalInfo) appendMessageSet(b []byte, ext *XXX_InternalExtensions, de
defer mu.Unlock()
var err error
var nerr nonFatal
// Fast-path for common cases: zero or one extensions.
// Don't bother sorting the keys.
@ -2587,12 +2789,12 @@ func (u *marshalInfo) appendMessageSet(b []byte, ext *XXX_InternalExtensions, de
v := e.value
p := toAddrPointer(&v, ei.isptr)
b, err = ei.marshaler(b, p, 3<<3|WireBytes, deterministic)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
b = append(b, 1<<3|WireEndGroup)
}
return b, nil
return b, nerr.E
}
// Sort the keys to provide a deterministic encoding.
@ -2626,11 +2828,11 @@ func (u *marshalInfo) appendMessageSet(b []byte, ext *XXX_InternalExtensions, de
p := toAddrPointer(&v, ei.isptr)
b, err = ei.marshaler(b, p, 3<<3|WireBytes, deterministic)
b = append(b, 1<<3|WireEndGroup)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
}
return b, nil
return b, nerr.E
}
// sizeV1Extensions computes the size of encoded data for a V1-API extension field.
@ -2673,6 +2875,7 @@ func (u *marshalInfo) appendV1Extensions(b []byte, m map[int32]Extension, determ
sort.Ints(keys)
var err error
var nerr nonFatal
for _, k := range keys {
e := m[int32(k)]
if e.value == nil || e.desc == nil {
@ -2689,11 +2892,11 @@ func (u *marshalInfo) appendV1Extensions(b []byte, m map[int32]Extension, determ
v := e.value
p := toAddrPointer(&v, ei.isptr)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if err != nil {
if !nerr.Merge(err) {
return b, err
}
}
return b, nil
return b, nerr.E
}
// newMarshaler is the interface representing objects that can marshal themselves.
@ -2758,6 +2961,11 @@ func Marshal(pb Message) ([]byte, error) {
// a Buffer for most applications.
func (p *Buffer) Marshal(pb Message) error {
var err error
if p.deterministic {
if _, ok := pb.(Marshaler); ok {
return fmt.Errorf("proto: deterministic not supported by the Marshal method of %T", pb)
}
}
if m, ok := pb.(newMarshaler); ok {
siz := m.XXX_Size()
p.grow(siz) // make sure buf has enough capacity

View file

@ -530,6 +530,25 @@ func (mi *mergeInfo) computeMergeInfo() {
}
case reflect.Struct:
switch {
case isSlice && !isPointer: // E.g. []pb.T
mergeInfo := getMergeInfo(tf)
zero := reflect.Zero(tf)
mfi.merge = func(dst, src pointer) {
// TODO: Make this faster?
dstsp := dst.asPointerTo(f.Type)
dsts := dstsp.Elem()
srcs := src.asPointerTo(f.Type).Elem()
for i := 0; i < srcs.Len(); i++ {
dsts = reflect.Append(dsts, zero)
srcElement := srcs.Index(i).Addr()
dstElement := dsts.Index(dsts.Len() - 1).Addr()
mergeInfo.merge(valToPointer(dstElement), valToPointer(srcElement))
}
if dsts.IsNil() {
dsts = reflect.MakeSlice(f.Type, 0, 0)
}
dstsp.Elem().Set(dsts)
}
case !isPointer:
mergeInfo := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {

View file

@ -99,6 +99,8 @@ type unmarshalFieldInfo struct {
// if a required field, contains a single set bit at this field's index in the required field list.
reqMask uint64
name string // name of the field, for error reporting
}
var (
@ -136,10 +138,10 @@ func (u *unmarshalInfo) unmarshal(m pointer, b []byte) error {
u.computeUnmarshalInfo()
}
if u.isMessageSet {
return UnmarshalMessageSet(b, m.offset(u.extensions).toExtensions())
return unmarshalMessageSet(b, m.offset(u.extensions).toExtensions())
}
var reqMask uint64 // bitmask of required fields we've seen.
var rnse *RequiredNotSetError // an instance of a RequiredNotSetError returned by a submessage.
var reqMask uint64 // bitmask of required fields we've seen.
var errLater error
for len(b) > 0 {
// Read tag and wire type.
// Special case 1 and 2 byte varints.
@ -178,11 +180,20 @@ func (u *unmarshalInfo) unmarshal(m pointer, b []byte) error {
if r, ok := err.(*RequiredNotSetError); ok {
// Remember this error, but keep parsing. We need to produce
// a full parse even if a required field is missing.
rnse = r
if errLater == nil {
errLater = r
}
reqMask |= f.reqMask
continue
}
if err != errInternalBadWireType {
if err == errInvalidUTF8 {
if errLater == nil {
fullName := revProtoTypes[reflect.PtrTo(u.typ)] + "." + f.name
errLater = &invalidUTF8Error{fullName}
}
continue
}
return err
}
// Fragments with bad wire type are treated as unknown fields.
@ -244,20 +255,16 @@ func (u *unmarshalInfo) unmarshal(m pointer, b []byte) error {
emap[int32(tag)] = e
}
}
if rnse != nil {
// A required field of a submessage/group is missing. Return that error.
return rnse
}
if reqMask != u.reqMask {
if reqMask != u.reqMask && errLater == nil {
// A required field of this message is missing.
for _, n := range u.reqFields {
if reqMask&1 == 0 {
return &RequiredNotSetError{n}
errLater = &RequiredNotSetError{n}
}
reqMask >>= 1
}
}
return nil
return errLater
}
// computeUnmarshalInfo fills in u with information for use
@ -360,26 +367,36 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
}
// Store the info in the correct slot in the message.
u.setTag(tag, toField(&f), unmarshal, reqMask)
u.setTag(tag, toField(&f), unmarshal, reqMask, name)
}
// Find any types associated with oneof fields.
// TODO: XXX_OneofFuncs returns more info than we need. Get rid of some of it?
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("XXX_OneofFuncs")
// gogo: len(oneofFields) > 0 is needed for embedded oneof messages, without a marshaler and unmarshaler
if fn.IsValid() && len(oneofFields) > 0 {
res := fn.Call(nil)[3] // last return value from XXX_OneofFuncs: []interface{}
for i := res.Len() - 1; i >= 0; i-- {
v := res.Index(i) // interface{}
tptr := reflect.ValueOf(v.Interface()).Type() // *Msg_X
typ := tptr.Elem() // Msg_X
if len(oneofFields) > 0 {
var oneofImplementers []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
for _, v := range oneofImplementers {
tptr := reflect.TypeOf(v) // *Msg_X
typ := tptr.Elem() // Msg_X
f := typ.Field(0) // oneof implementers have one field
baseUnmarshal := fieldUnmarshaler(&f)
tagstr := strings.Split(f.Tag.Get("protobuf"), ",")[1]
tag, err := strconv.Atoi(tagstr)
tags := strings.Split(f.Tag.Get("protobuf"), ",")
fieldNum, err := strconv.Atoi(tags[1])
if err != nil {
panic("protobuf tag field not an integer: " + tagstr)
panic("protobuf tag field not an integer: " + tags[1])
}
var name string
for _, tag := range tags {
if strings.HasPrefix(tag, "name=") {
name = strings.TrimPrefix(tag, "name=")
break
}
}
// Find the oneof field that this struct implements.
@ -390,14 +407,15 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
// That lets us know where this struct should be stored
// when we encounter it during unmarshaling.
unmarshal := makeUnmarshalOneof(typ, of.ityp, baseUnmarshal)
u.setTag(tag, of.field, unmarshal, 0)
u.setTag(fieldNum, of.field, unmarshal, 0, name)
}
}
}
}
// Get extension ranges, if any.
fn = reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
if fn.IsValid() {
if !u.extensions.IsValid() && !u.oldExtensions.IsValid() && !u.bytesExtensions.IsValid() {
panic("a message with extensions, but no extensions field in " + t.Name())
@ -411,7 +429,7 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
// [0 0] is [tag=0/wiretype=varint varint-encoded-0].
u.setTag(0, zeroField, func(b []byte, f pointer, w int) ([]byte, error) {
return nil, fmt.Errorf("proto: %s: illegal tag 0 (wire type %d)", t, w)
}, 0)
}, 0, "")
// Set mask for required field check.
u.reqMask = uint64(1)<<uint(len(u.reqFields)) - 1
@ -423,8 +441,9 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
// tag = tag # for field
// field/unmarshal = unmarshal info for that field.
// reqMask = if required, bitmask for field position in required field list. 0 otherwise.
func (u *unmarshalInfo) setTag(tag int, field field, unmarshal unmarshaler, reqMask uint64) {
i := unmarshalFieldInfo{field: field, unmarshal: unmarshal, reqMask: reqMask}
// name = short name of the field.
func (u *unmarshalInfo) setTag(tag int, field field, unmarshal unmarshaler, reqMask uint64, name string) {
i := unmarshalFieldInfo{field: field, unmarshal: unmarshal, reqMask: reqMask, name: name}
n := u.typ.NumField()
if tag >= 0 && (tag < 16 || tag < 2*n) { // TODO: what are the right numbers here?
for len(u.dense) <= tag {
@ -455,10 +474,16 @@ func typeUnmarshaler(t reflect.Type, tags string) unmarshaler {
ctype := false
isTime := false
isDuration := false
isWktPointer := false
proto3 := false
validateUTF8 := true
for _, tag := range tagArray[3:] {
if strings.HasPrefix(tag, "name=") {
name = tag[5:]
}
if tag == "proto3" {
proto3 = true
}
if strings.HasPrefix(tag, "customtype=") {
ctype = true
}
@ -468,7 +493,11 @@ func typeUnmarshaler(t reflect.Type, tags string) unmarshaler {
if tag == "stdduration" {
isDuration = true
}
if tag == "wktptr" {
isWktPointer = true
}
}
validateUTF8 = validateUTF8 && proto3
// Figure out packaging (pointer, slice, or both)
slice := false
@ -522,6 +551,112 @@ func typeUnmarshaler(t reflect.Type, tags string) unmarshaler {
return makeUnmarshalDuration(getUnmarshalInfo(t), name)
}
if isWktPointer {
switch t.Kind() {
case reflect.Float64:
if pointer {
if slice {
return makeStdDoubleValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdDoubleValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdDoubleValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdDoubleValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Float32:
if pointer {
if slice {
return makeStdFloatValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdFloatValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdFloatValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdFloatValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Int64:
if pointer {
if slice {
return makeStdInt64ValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdInt64ValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdInt64ValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdInt64ValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Uint64:
if pointer {
if slice {
return makeStdUInt64ValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdUInt64ValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdUInt64ValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdUInt64ValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Int32:
if pointer {
if slice {
return makeStdInt32ValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdInt32ValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdInt32ValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdInt32ValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Uint32:
if pointer {
if slice {
return makeStdUInt32ValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdUInt32ValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdUInt32ValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdUInt32ValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.Bool:
if pointer {
if slice {
return makeStdBoolValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdBoolValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdBoolValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdBoolValueUnmarshaler(getUnmarshalInfo(t), name)
case reflect.String:
if pointer {
if slice {
return makeStdStringValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdStringValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdStringValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdStringValueUnmarshaler(getUnmarshalInfo(t), name)
case uint8SliceType:
if pointer {
if slice {
return makeStdBytesValuePtrSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdBytesValuePtrUnmarshaler(getUnmarshalInfo(t), name)
}
if slice {
return makeStdBytesValueSliceUnmarshaler(getUnmarshalInfo(t), name)
}
return makeStdBytesValueUnmarshaler(getUnmarshalInfo(t), name)
default:
panic(fmt.Sprintf("unknown wktpointer type %#v", t))
}
}
// We'll never have both pointer and slice for basic types.
if pointer && slice && t.Kind() != reflect.Struct {
panic("both pointer and slice for basic type in " + t.Name())
@ -656,6 +791,15 @@ func typeUnmarshaler(t reflect.Type, tags string) unmarshaler {
}
return unmarshalBytesValue
case reflect.String:
if validateUTF8 {
if pointer {
return unmarshalUTF8StringPtr
}
if slice {
return unmarshalUTF8StringSlice
}
return unmarshalUTF8StringValue
}
if pointer {
return unmarshalStringPtr
}
@ -1516,9 +1660,6 @@ func unmarshalStringValue(b []byte, f pointer, w int) ([]byte, error) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
*f.toString() = v
return b[x:], nil
}
@ -1536,9 +1677,6 @@ func unmarshalStringPtr(b []byte, f pointer, w int) ([]byte, error) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
*f.toStringPtr() = &v
return b[x:], nil
}
@ -1556,14 +1694,72 @@ func unmarshalStringSlice(b []byte, f pointer, w int) ([]byte, error) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
if !utf8.ValidString(v) {
return nil, errInvalidUTF8
}
s := f.toStringSlice()
*s = append(*s, v)
return b[x:], nil
}
func unmarshalUTF8StringValue(b []byte, f pointer, w int) ([]byte, error) {
if w != WireBytes {
return b, errInternalBadWireType
}
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
if x > uint64(len(b)) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
*f.toString() = v
if !utf8.ValidString(v) {
return b[x:], errInvalidUTF8
}
return b[x:], nil
}
func unmarshalUTF8StringPtr(b []byte, f pointer, w int) ([]byte, error) {
if w != WireBytes {
return b, errInternalBadWireType
}
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
if x > uint64(len(b)) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
*f.toStringPtr() = &v
if !utf8.ValidString(v) {
return b[x:], errInvalidUTF8
}
return b[x:], nil
}
func unmarshalUTF8StringSlice(b []byte, f pointer, w int) ([]byte, error) {
if w != WireBytes {
return b, errInternalBadWireType
}
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
if x > uint64(len(b)) {
return nil, io.ErrUnexpectedEOF
}
v := string(b[:x])
s := f.toStringSlice()
*s = append(*s, v)
if !utf8.ValidString(v) {
return b[x:], errInvalidUTF8
}
return b[x:], nil
}
var emptyBuf [0]byte
func unmarshalBytesValue(b []byte, f pointer, w int) ([]byte, error) {
@ -1731,6 +1927,9 @@ func makeUnmarshalMap(f *reflect.StructField) unmarshaler {
if t == "stdduration" {
valTags = append(valTags, t)
}
if t == "wktptr" {
valTags = append(valTags, t)
}
}
unmarshalKey := typeUnmarshaler(kt, f.Tag.Get("protobuf_key"))
unmarshalVal := typeUnmarshaler(vt, strings.Join(valTags, ","))
@ -1755,6 +1954,7 @@ func makeUnmarshalMap(f *reflect.StructField) unmarshaler {
// Maps will be somewhat slow. Oh well.
// Read key and value from data.
var nerr nonFatal
k := reflect.New(kt)
v := reflect.New(vt)
for len(b) > 0 {
@ -1775,7 +1975,7 @@ func makeUnmarshalMap(f *reflect.StructField) unmarshaler {
err = errInternalBadWireType // skip unknown tag
}
if err == nil {
if nerr.Merge(err) {
continue
}
if err != errInternalBadWireType {
@ -1798,7 +1998,7 @@ func makeUnmarshalMap(f *reflect.StructField) unmarshaler {
// Insert into map.
m.SetMapIndex(k.Elem(), v.Elem())
return r, nil
return r, nerr.E
}
}
@ -1824,15 +2024,16 @@ func makeUnmarshalOneof(typ, ityp reflect.Type, unmarshal unmarshaler) unmarshal
// Unmarshal data into holder.
// We unmarshal into the first field of the holder object.
var err error
var nerr nonFatal
b, err = unmarshal(b, valToPointer(v).offset(field0), w)
if err != nil {
if !nerr.Merge(err) {
return nil, err
}
// Write pointer to holder into target field.
f.asPointerTo(ityp).Elem().Set(v)
return b, nil
return b, nerr.E
}
}
@ -1945,7 +2146,7 @@ func encodeVarint(b []byte, x uint64) []byte {
// If there is an error, it returns 0,0.
func decodeVarint(b []byte) (uint64, int) {
var x, y uint64
if len(b) <= 0 {
if len(b) == 0 {
goto bad
}
x = uint64(b[0])

View file

@ -364,7 +364,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if err := tm.writeAny(w, key, props.mkeyprop); err != nil {
if err := tm.writeAny(w, key, props.MapKeyProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
@ -381,7 +381,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if err := tm.writeAny(w, val, props.mvalprop); err != nil {
if err := tm.writeAny(w, val, props.MapValProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {

View file

@ -636,17 +636,17 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
if err := p.consumeToken(":"); err != nil {
return err
}
if err := p.readAny(key, props.mkeyprop); err != nil {
if err := p.readAny(key, props.MapKeyProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
case "value":
if err := p.checkForColon(props.mvalprop, dst.Type().Elem()); err != nil {
if err := p.checkForColon(props.MapValProp, dst.Type().Elem()); err != nil {
return err
}
if err := p.readAny(val, props.mvalprop); err != nil {
if err := p.readAny(val, props.MapValProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
@ -923,6 +923,16 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
fv.SetFloat(f)
return nil
}
case reflect.Int8:
if x, err := strconv.ParseInt(tok.value, 0, 8); err == nil {
fv.SetInt(x)
return nil
}
case reflect.Int16:
if x, err := strconv.ParseInt(tok.value, 0, 16); err == nil {
fv.SetInt(x)
return nil
}
case reflect.Int32:
if x, err := strconv.ParseInt(tok.value, 0, 32); err == nil {
fv.SetInt(x)
@ -970,6 +980,16 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
}
// TODO: Handle nested messages which implement encoding.TextUnmarshaler.
return p.readStruct(fv, terminator)
case reflect.Uint8:
if x, err := strconv.ParseUint(tok.value, 0, 8); err == nil {
fv.SetUint(x)
return nil
}
case reflect.Uint16:
if x, err := strconv.ParseUint(tok.value, 0, 16); err == nil {
fv.SetUint(x)
return nil
}
case reflect.Uint32:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
fv.SetUint(uint64(x))

1888
vendor/github.com/gogo/protobuf/proto/wrappers.go generated vendored Normal file

File diff suppressed because it is too large Load diff

113
vendor/github.com/gogo/protobuf/proto/wrappers_gogo.go generated vendored Normal file
View file

@ -0,0 +1,113 @@
// Protocol Buffers for Go with Gadgets
//
// Copyright (c) 2018, The GoGo Authors. All rights reserved.
// http://github.com/gogo/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
type float64Value struct {
Value float64 `protobuf:"fixed64,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *float64Value) Reset() { *m = float64Value{} }
func (*float64Value) ProtoMessage() {}
func (*float64Value) String() string { return "float64<string>" }
type float32Value struct {
Value float32 `protobuf:"fixed32,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *float32Value) Reset() { *m = float32Value{} }
func (*float32Value) ProtoMessage() {}
func (*float32Value) String() string { return "float32<string>" }
type int64Value struct {
Value int64 `protobuf:"varint,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *int64Value) Reset() { *m = int64Value{} }
func (*int64Value) ProtoMessage() {}
func (*int64Value) String() string { return "int64<string>" }
type uint64Value struct {
Value uint64 `protobuf:"varint,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *uint64Value) Reset() { *m = uint64Value{} }
func (*uint64Value) ProtoMessage() {}
func (*uint64Value) String() string { return "uint64<string>" }
type int32Value struct {
Value int32 `protobuf:"varint,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *int32Value) Reset() { *m = int32Value{} }
func (*int32Value) ProtoMessage() {}
func (*int32Value) String() string { return "int32<string>" }
type uint32Value struct {
Value uint32 `protobuf:"varint,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *uint32Value) Reset() { *m = uint32Value{} }
func (*uint32Value) ProtoMessage() {}
func (*uint32Value) String() string { return "uint32<string>" }
type boolValue struct {
Value bool `protobuf:"varint,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *boolValue) Reset() { *m = boolValue{} }
func (*boolValue) ProtoMessage() {}
func (*boolValue) String() string { return "bool<string>" }
type stringValue struct {
Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *stringValue) Reset() { *m = stringValue{} }
func (*stringValue) ProtoMessage() {}
func (*stringValue) String() string { return "string<string>" }
type bytesValue struct {
Value []byte `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
}
func (m *bytesValue) Reset() { *m = bytesValue{} }
func (*bytesValue) ProtoMessage() {}
func (*bytesValue) String() string { return "[]byte<string>" }
func init() {
RegisterType((*float64Value)(nil), "gogo.protobuf.proto.DoubleValue")
RegisterType((*float32Value)(nil), "gogo.protobuf.proto.FloatValue")
RegisterType((*int64Value)(nil), "gogo.protobuf.proto.Int64Value")
RegisterType((*uint64Value)(nil), "gogo.protobuf.proto.UInt64Value")
RegisterType((*int32Value)(nil), "gogo.protobuf.proto.Int32Value")
RegisterType((*uint32Value)(nil), "gogo.protobuf.proto.UInt32Value")
RegisterType((*boolValue)(nil), "gogo.protobuf.proto.BoolValue")
RegisterType((*stringValue)(nil), "gogo.protobuf.proto.StringValue")
RegisterType((*bytesValue)(nil), "gogo.protobuf.proto.BytesValue")
}

View file

@ -186,7 +186,6 @@ func (p *Buffer) DecodeVarint() (x uint64, err error) {
if b&0x80 == 0 {
goto done
}
// x -= 0x80 << 63 // Always zero.
return 0, errOverflow

63
vendor/github.com/golang/protobuf/proto/deprecated.go generated vendored Normal file
View file

@ -0,0 +1,63 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2018 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import "errors"
// Deprecated: do not use.
type Stats struct{ Emalloc, Dmalloc, Encode, Decode, Chit, Cmiss, Size uint64 }
// Deprecated: do not use.
func GetStats() Stats { return Stats{} }
// Deprecated: do not use.
func MarshalMessageSet(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSet([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func MarshalMessageSetJSON(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
func UnmarshalMessageSetJSON([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
func RegisterMessageSetType(Message, int32, string) {}

View file

@ -246,7 +246,8 @@ func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
return false
}
m1, m2 := e1.value, e2.value
m1 := extensionAsLegacyType(e1.value)
m2 := extensionAsLegacyType(e2.value)
if m1 == nil && m2 == nil {
// Both have only encoded form.

View file

@ -185,9 +185,25 @@ type Extension struct {
// extension will have only enc set. When such an extension is
// accessed using GetExtension (or GetExtensions) desc and value
// will be set.
desc *ExtensionDesc
desc *ExtensionDesc
// value is a concrete value for the extension field. Let the type of
// desc.ExtensionType be the "API type" and the type of Extension.value
// be the "storage type". The API type and storage type are the same except:
// * For scalars (except []byte), the API type uses *T,
// while the storage type uses T.
// * For repeated fields, the API type uses []T, while the storage type
// uses *[]T.
//
// The reason for the divergence is so that the storage type more naturally
// matches what is expected of when retrieving the values through the
// protobuf reflection APIs.
//
// The value may only be populated if desc is also populated.
value interface{}
enc []byte
// enc is the raw bytes for the extension field.
enc []byte
}
// SetRawExtension is for testing only.
@ -334,7 +350,7 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
// descriptors with the same field number.
return nil, errors.New("proto: descriptor conflict")
}
return e.value, nil
return extensionAsLegacyType(e.value), nil
}
if extension.ExtensionType == nil {
@ -349,11 +365,11 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
// Remember the decoded version and drop the encoded version.
// That way it is safe to mutate what we return.
e.value = v
e.value = extensionAsStorageType(v)
e.desc = extension
e.enc = nil
emap[extension.Field] = e
return e.value, nil
return extensionAsLegacyType(e.value), nil
}
// defaultExtensionValue returns the default value for extension.
@ -488,7 +504,7 @@ func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error
}
typ := reflect.TypeOf(extension.ExtensionType)
if typ != reflect.TypeOf(value) {
return errors.New("proto: bad extension value type")
return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", value, extension.ExtensionType)
}
// nil extension values need to be caught early, because the
// encoder can't distinguish an ErrNil due to a nil extension
@ -500,7 +516,7 @@ func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error
}
extmap := epb.extensionsWrite()
extmap[extension.Field] = Extension{desc: extension, value: value}
extmap[extension.Field] = Extension{desc: extension, value: extensionAsStorageType(value)}
return nil
}
@ -541,3 +557,51 @@ func RegisterExtension(desc *ExtensionDesc) {
func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc {
return extensionMaps[reflect.TypeOf(pb).Elem()]
}
// extensionAsLegacyType converts an value in the storage type as the API type.
// See Extension.value.
func extensionAsLegacyType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
// Represent primitive types as a pointer to the value.
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Slice:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
}
}
}
return v
}
// extensionAsStorageType converts an value in the API type as the storage type.
// See Extension.value.
func extensionAsStorageType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
}
}
case reflect.Slice:
// Represent slice types as a pointer to the value.
if rv.Type().Elem().Kind() != reflect.Uint8 {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
}
}
return v
}

View file

@ -341,26 +341,6 @@ type Message interface {
ProtoMessage()
}
// Stats records allocation details about the protocol buffer encoders
// and decoders. Useful for tuning the library itself.
type Stats struct {
Emalloc uint64 // mallocs in encode
Dmalloc uint64 // mallocs in decode
Encode uint64 // number of encodes
Decode uint64 // number of decodes
Chit uint64 // number of cache hits
Cmiss uint64 // number of cache misses
Size uint64 // number of sizes
}
// Set to true to enable stats collection.
const collectStats = false
var stats Stats
// GetStats returns a copy of the global Stats structure.
func GetStats() Stats { return stats }
// A Buffer is a buffer manager for marshaling and unmarshaling
// protocol buffers. It may be reused between invocations to
// reduce memory usage. It is not necessary to use a Buffer;
@ -960,13 +940,19 @@ func isProto3Zero(v reflect.Value) bool {
return false
}
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion2 = true
const (
// ProtoPackageIsVersion3 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion3 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion1 = true
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion1 = true
)
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.

View file

@ -36,13 +36,7 @@ package proto
*/
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"reflect"
"sort"
"sync"
)
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
@ -145,46 +139,9 @@ func skipVarint(buf []byte) []byte {
return buf[i+1:]
}
// MarshalMessageSet encodes the extension map represented by m in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(exts interface{}) ([]byte, error) {
return marshalMessageSet(exts, false)
}
// marshaMessageSet implements above function, with the opt to turn on / off deterministic during Marshal.
func marshalMessageSet(exts interface{}, deterministic bool) ([]byte, error) {
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var u marshalInfo
siz := u.sizeMessageSet(exts)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, exts, deterministic)
case map[int32]Extension:
// This is an old-style extension map.
// Wrap it in a new-style XXX_InternalExtensions.
ie := XXX_InternalExtensions{
p: &struct {
mu sync.Mutex
extensionMap map[int32]Extension
}{
extensionMap: exts,
},
}
var u marshalInfo
siz := u.sizeMessageSet(&ie)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, &ie, deterministic)
default:
return nil, errors.New("proto: not an extension map")
}
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// unmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, exts interface{}) error {
func unmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
@ -222,93 +179,3 @@ func UnmarshalMessageSet(buf []byte, exts interface{}) error {
}
return nil
}
// MarshalMessageSetJSON encodes the extension map represented by m in JSON format.
// It is called by generated MarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var mu sync.Locker
m, mu = exts.extensionsRead()
if m != nil {
// Keep the extensions map locked until we're done marshaling to prevent
// races between marshaling and unmarshaling the lazily-{en,de}coded
// values.
mu.Lock()
defer mu.Unlock()
}
case map[int32]Extension:
m = exts
default:
return nil, errors.New("proto: not an extension map")
}
var b bytes.Buffer
b.WriteByte('{')
// Process the map in key order for deterministic output.
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids)) // int32Slice defined in text.go
for i, id := range ids {
ext := m[id]
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
if i > 0 && b.Len() > 1 {
b.WriteByte(',')
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value
if x == nil {
x = reflect.New(msd.t.Elem()).Interface()
if err := Unmarshal(ext.enc, x.(Message)); err != nil {
return nil, err
}
}
d, err := json.Marshal(x)
if err != nil {
return nil, err
}
b.Write(d)
}
b.WriteByte('}')
return b.Bytes(), nil
}
// UnmarshalMessageSetJSON decodes the extension map encoded in buf in JSON format.
// It is called by generated UnmarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSetJSON(buf []byte, exts interface{}) error {
// Common-case fast path.
if len(buf) == 0 || bytes.Equal(buf, []byte("{}")) {
return nil
}
// This is fairly tricky, and it's not clear that it is needed.
return errors.New("TODO: UnmarshalMessageSetJSON not yet implemented")
}
// A global registry of types that can be used in a MessageSet.
var messageSetMap = make(map[int32]messageSetDesc)
type messageSetDesc struct {
t reflect.Type // pointer to struct
name string
}
// RegisterMessageSetType is called from the generated code.
func RegisterMessageSetType(m Message, fieldNum int32, name string) {
messageSetMap[fieldNum] = messageSetDesc{
t: reflect.TypeOf(m),
name: name,
}
}

View file

@ -79,10 +79,13 @@ func toPointer(i *Message) pointer {
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
func toAddrPointer(i *interface{}, isptr, deref bool) pointer {
v := reflect.ValueOf(*i)
u := reflect.New(v.Type())
u.Elem().Set(v)
if deref {
u = u.Elem()
}
return pointer{v: u}
}

View file

@ -85,16 +85,21 @@ func toPointer(i *Message) pointer {
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
func toAddrPointer(i *interface{}, isptr, deref bool) (p pointer) {
// Super-tricky - read or get the address of data word of interface value.
if isptr {
// The interface is of pointer type, thus it is a direct interface.
// The data word is the pointer data itself. We take its address.
return pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
p = pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
} else {
// The interface is not of pointer type. The data word is the pointer
// to the data.
p = pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// The interface is not of pointer type. The data word is the pointer
// to the data.
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
if deref {
p.p = *(*unsafe.Pointer)(p.p)
}
return p
}
// valToPointer converts v to a pointer. v must be of pointer type.

View file

@ -38,7 +38,6 @@ package proto
import (
"fmt"
"log"
"os"
"reflect"
"sort"
"strconv"
@ -194,7 +193,7 @@ func (p *Properties) Parse(s string) {
// "bytes,49,opt,name=foo,def=hello!"
fields := strings.Split(s, ",") // breaks def=, but handled below.
if len(fields) < 2 {
fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s)
log.Printf("proto: tag has too few fields: %q", s)
return
}
@ -214,7 +213,7 @@ func (p *Properties) Parse(s string) {
p.WireType = WireBytes
// no numeric converter for non-numeric types
default:
fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s)
log.Printf("proto: tag has unknown wire type: %q", s)
return
}
@ -334,9 +333,6 @@ func GetProperties(t reflect.Type) *StructProperties {
sprop, ok := propertiesMap[t]
propertiesMu.RUnlock()
if ok {
if collectStats {
stats.Chit++
}
return sprop
}
@ -346,17 +342,20 @@ func GetProperties(t reflect.Type) *StructProperties {
return sprop
}
type (
oneofFuncsIface interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
oneofWrappersIface interface {
XXX_OneofWrappers() []interface{}
}
)
// getPropertiesLocked requires that propertiesMu is held.
func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok {
if collectStats {
stats.Chit++
}
return prop
}
if collectStats {
stats.Cmiss++
}
prop := new(StructProperties)
// in case of recursive protos, fill this in now.
@ -391,13 +390,14 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
// Re-order prop.order.
sort.Sort(prop)
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
var oots []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oots = m.XXX_OneofFuncs()
case oneofWrappersIface:
oots = m.XXX_OneofWrappers()
}
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok {
var oots []interface{}
_, _, _, oots = om.XXX_OneofFuncs()
if len(oots) > 0 {
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots {

View file

@ -87,6 +87,7 @@ type marshalElemInfo struct {
sizer sizer
marshaler marshaler
isptr bool // elem is pointer typed, thus interface of this type is a direct interface (extension only)
deref bool // dereference the pointer before operating on it; implies isptr
}
var (
@ -320,8 +321,11 @@ func (u *marshalInfo) computeMarshalInfo() {
// get oneof implementers
var oneofImplementers []interface{}
if m, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok {
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
n := t.NumField()
@ -407,13 +411,22 @@ func (u *marshalInfo) getExtElemInfo(desc *ExtensionDesc) *marshalElemInfo {
panic("tag is not an integer")
}
wt := wiretype(tags[0])
if t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct {
t = t.Elem()
}
sizer, marshaler := typeMarshaler(t, tags, false, false)
var deref bool
if t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8 {
t = reflect.PtrTo(t)
deref = true
}
e = &marshalElemInfo{
wiretag: uint64(tag)<<3 | wt,
tagsize: SizeVarint(uint64(tag) << 3),
sizer: sizer,
marshaler: marshaler,
isptr: t.Kind() == reflect.Ptr,
deref: deref,
}
// update cache
@ -448,7 +461,7 @@ func (fi *marshalFieldInfo) computeMarshalFieldInfo(f *reflect.StructField) {
func (fi *marshalFieldInfo) computeOneofFieldInfo(f *reflect.StructField, oneofImplementers []interface{}) {
fi.field = toField(f)
fi.wiretag = 1<<31 - 1 // Use a large tag number, make oneofs sorted at the end. This tag will not appear on the wire.
fi.wiretag = math.MaxInt32 // Use a large tag number, make oneofs sorted at the end. This tag will not appear on the wire.
fi.isPointer = true
fi.sizer, fi.marshaler = makeOneOfMarshaler(fi, f)
fi.oneofElems = make(map[reflect.Type]*marshalElemInfo)
@ -476,10 +489,6 @@ func (fi *marshalFieldInfo) computeOneofFieldInfo(f *reflect.StructField, oneofI
}
}
type oneofMessage interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
// wiretype returns the wire encoding of the type.
func wiretype(encoding string) uint64 {
switch encoding {
@ -2310,8 +2319,8 @@ func makeMapMarshaler(f *reflect.StructField) (sizer, marshaler) {
for _, k := range m.MapKeys() {
ki := k.Interface()
vi := m.MapIndex(k).Interface()
kaddr := toAddrPointer(&ki, false) // pointer to key
vaddr := toAddrPointer(&vi, valIsPtr) // pointer to value
kaddr := toAddrPointer(&ki, false, false) // pointer to key
vaddr := toAddrPointer(&vi, valIsPtr, false) // pointer to value
siz := keySizer(kaddr, 1) + valSizer(vaddr, 1) // tag of key = 1 (size=1), tag of val = 2 (size=1)
n += siz + SizeVarint(uint64(siz)) + tagsize
}
@ -2329,8 +2338,8 @@ func makeMapMarshaler(f *reflect.StructField) (sizer, marshaler) {
for _, k := range keys {
ki := k.Interface()
vi := m.MapIndex(k).Interface()
kaddr := toAddrPointer(&ki, false) // pointer to key
vaddr := toAddrPointer(&vi, valIsPtr) // pointer to value
kaddr := toAddrPointer(&ki, false, false) // pointer to key
vaddr := toAddrPointer(&vi, valIsPtr, false) // pointer to value
b = appendVarint(b, tag)
siz := keySizer(kaddr, 1) + valCachedSizer(vaddr, 1) // tag of key = 1 (size=1), tag of val = 2 (size=1)
b = appendVarint(b, uint64(siz))
@ -2399,7 +2408,7 @@ func (u *marshalInfo) sizeExtensions(ext *XXX_InternalExtensions) int {
// the last time this function was called.
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
n += ei.sizer(p, ei.tagsize)
}
mu.Unlock()
@ -2434,7 +2443,7 @@ func (u *marshalInfo) appendExtensions(b []byte, ext *XXX_InternalExtensions, de
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if !nerr.Merge(err) {
return b, err
@ -2465,7 +2474,7 @@ func (u *marshalInfo) appendExtensions(b []byte, ext *XXX_InternalExtensions, de
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if !nerr.Merge(err) {
return b, err
@ -2510,7 +2519,7 @@ func (u *marshalInfo) sizeMessageSet(ext *XXX_InternalExtensions) int {
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
n += ei.sizer(p, 1) // message, tag = 3 (size=1)
}
mu.Unlock()
@ -2553,7 +2562,7 @@ func (u *marshalInfo) appendMessageSet(b []byte, ext *XXX_InternalExtensions, de
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
b, err = ei.marshaler(b, p, 3<<3|WireBytes, deterministic)
if !nerr.Merge(err) {
return b, err
@ -2591,7 +2600,7 @@ func (u *marshalInfo) appendMessageSet(b []byte, ext *XXX_InternalExtensions, de
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
b, err = ei.marshaler(b, p, 3<<3|WireBytes, deterministic)
b = append(b, 1<<3|WireEndGroup)
if !nerr.Merge(err) {
@ -2621,7 +2630,7 @@ func (u *marshalInfo) sizeV1Extensions(m map[int32]Extension) int {
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
n += ei.sizer(p, ei.tagsize)
}
return n
@ -2656,7 +2665,7 @@ func (u *marshalInfo) appendV1Extensions(b []byte, m map[int32]Extension, determ
ei := u.getExtElemInfo(e.desc)
v := e.value
p := toAddrPointer(&v, ei.isptr)
p := toAddrPointer(&v, ei.isptr, ei.deref)
b, err = ei.marshaler(b, p, ei.wiretag, deterministic)
if !nerr.Merge(err) {
return b, err

View file

@ -136,7 +136,7 @@ func (u *unmarshalInfo) unmarshal(m pointer, b []byte) error {
u.computeUnmarshalInfo()
}
if u.isMessageSet {
return UnmarshalMessageSet(b, m.offset(u.extensions).toExtensions())
return unmarshalMessageSet(b, m.offset(u.extensions).toExtensions())
}
var reqMask uint64 // bitmask of required fields we've seen.
var errLater error
@ -362,46 +362,48 @@ func (u *unmarshalInfo) computeUnmarshalInfo() {
}
// Find any types associated with oneof fields.
// TODO: XXX_OneofFuncs returns more info than we need. Get rid of some of it?
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("XXX_OneofFuncs")
if fn.IsValid() {
res := fn.Call(nil)[3] // last return value from XXX_OneofFuncs: []interface{}
for i := res.Len() - 1; i >= 0; i-- {
v := res.Index(i) // interface{}
tptr := reflect.ValueOf(v.Interface()).Type() // *Msg_X
typ := tptr.Elem() // Msg_X
var oneofImplementers []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oneofImplementers = m.XXX_OneofFuncs()
case oneofWrappersIface:
oneofImplementers = m.XXX_OneofWrappers()
}
for _, v := range oneofImplementers {
tptr := reflect.TypeOf(v) // *Msg_X
typ := tptr.Elem() // Msg_X
f := typ.Field(0) // oneof implementers have one field
baseUnmarshal := fieldUnmarshaler(&f)
tags := strings.Split(f.Tag.Get("protobuf"), ",")
fieldNum, err := strconv.Atoi(tags[1])
if err != nil {
panic("protobuf tag field not an integer: " + tags[1])
}
var name string
for _, tag := range tags {
if strings.HasPrefix(tag, "name=") {
name = strings.TrimPrefix(tag, "name=")
break
}
}
// Find the oneof field that this struct implements.
// Might take O(n^2) to process all of the oneofs, but who cares.
for _, of := range oneofFields {
if tptr.Implements(of.ityp) {
// We have found the corresponding interface for this struct.
// That lets us know where this struct should be stored
// when we encounter it during unmarshaling.
unmarshal := makeUnmarshalOneof(typ, of.ityp, baseUnmarshal)
u.setTag(fieldNum, of.field, unmarshal, 0, name)
}
f := typ.Field(0) // oneof implementers have one field
baseUnmarshal := fieldUnmarshaler(&f)
tags := strings.Split(f.Tag.Get("protobuf"), ",")
fieldNum, err := strconv.Atoi(tags[1])
if err != nil {
panic("protobuf tag field not an integer: " + tags[1])
}
var name string
for _, tag := range tags {
if strings.HasPrefix(tag, "name=") {
name = strings.TrimPrefix(tag, "name=")
break
}
}
// Find the oneof field that this struct implements.
// Might take O(n^2) to process all of the oneofs, but who cares.
for _, of := range oneofFields {
if tptr.Implements(of.ityp) {
// We have found the corresponding interface for this struct.
// That lets us know where this struct should be stored
// when we encounter it during unmarshaling.
unmarshal := makeUnmarshalOneof(typ, of.ityp, baseUnmarshal)
u.setTag(fieldNum, of.field, unmarshal, 0, name)
}
}
}
// Get extension ranges, if any.
fn = reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
fn := reflect.Zero(reflect.PtrTo(t)).MethodByName("ExtensionRangeArray")
if fn.IsValid() {
if !u.extensions.IsValid() && !u.oldExtensions.IsValid() {
panic("a message with extensions, but no extensions field in " + t.Name())
@ -1948,7 +1950,7 @@ func encodeVarint(b []byte, x uint64) []byte {
// If there is an error, it returns 0,0.
func decodeVarint(b []byte) (uint64, int) {
var x, y uint64
if len(b) <= 0 {
if len(b) == 0 {
goto bad
}
x = uint64(b[0])

View file

@ -1,3 +1,41 @@
/*
Gokmeans is a simple k-means clusterer that determines centroids with the Train function,
and then classifies additional observations with the Nearest function.
package main
import (
"fmt"
"github.com/mdesenfants/gokmeans"
)
var observations []gokmeans.Node = []gokmeans.Node {
gokmeans.Node{20.0, 20.0, 20.0, 20.0},
gokmeans.Node{21.0, 21.0, 21.0, 21.0},
gokmeans.Node{100.5, 100.5, 100.5, 100.5},
gokmeans.Node{50.1, 50.1, 50.1, 50.1},
gokmeans.Node{64.2, 64.2, 64.2, 64.2},
}
func main() {
// Get a list of centroids and output the values
if success, centroids := gokmeans.Train(observations, 2, 50); success {
// Show the centroids
fmt.Println("The centroids are")
for _, centroid := range centroids {
fmt.Println(centroid)
}
// Output the clusters
fmt.Println("...")
for _, observation := range observations {
index := gokmeans.Nearest(observation, centroids)
fmt.Println(observation, "belongs in cluster", index+1, ".")
}
}
}
*/
package gokmeans
import (
@ -5,8 +43,12 @@ import (
"time"
)
// Node represents an observation of floating point values
type Node []float64
// Train takes an array of Nodes (observations), and produces as many centroids as specified by
// clusterCount. It will stop adjusting centroids after maxRounds is reached. If there are less
// observations than the number of centroids requested, then Train will return (false, nil).
func Train(Nodes []Node, clusterCount int, maxRounds int) (bool, []Node) {
if int(len(Nodes)) < clusterCount {
return false, nil
@ -36,6 +78,11 @@ func Train(Nodes []Node, clusterCount int, maxRounds int) (bool, []Node) {
copy(centroids[i], Nodes[r.Intn(len(Nodes))])
}
return Train2(Nodes, clusterCount, maxRounds, centroids)
}
// Provide initial centroids
func Train2(Nodes []Node, clusterCount int, maxRounds int, centroids []Node) (bool, []Node) {
// Train centroids
movement := true
for i := 0; i < maxRounds && movement; i++ {
@ -61,6 +108,7 @@ func Train(Nodes []Node, clusterCount int, maxRounds int) (bool, []Node) {
return true, centroids
}
// equal determines if two nodes have the same values.
func equal(node1, node2 Node) bool {
if len(node1) != len(node2) {
return false
@ -75,6 +123,7 @@ func equal(node1, node2 Node) bool {
return true
}
// Nearest return the index of the closest centroid from nodes
func Nearest(in Node, nodes []Node) int {
count := len(nodes)
@ -102,6 +151,7 @@ func Nearest(in Node, nodes []Node) int {
return mindex
}
// Distance determines the square Euclidean distance between two nodes
func distance(node1 Node, node2 Node) float64 {
length := len(node1)
squares := make(Node, length, length)
@ -126,6 +176,8 @@ func distance(node1 Node, node2 Node) float64 {
return sum
}
// meanNode takes an array of Nodes and returns a node which represents the average
// value for the provided nodes. This is used to center the centroids within their cluster.
func meanNode(values []Node) Node {
newNode := make(Node, len(values[0]))
@ -142,6 +194,8 @@ func meanNode(values []Node) Node {
return newNode
}
// wait stops a function from continuing until the provided channel has processed as
// many items as there are dimensions in the provided Node.
func wait(c chan int, values Node) {
count := len(values)

View file

@ -29,6 +29,15 @@ const (
backgroundMask = (backgroundRed | backgroundBlue | backgroundGreen | backgroundIntensity)
)
const (
genericRead = 0x80000000
genericWrite = 0x40000000
)
const (
consoleTextmodeBuffer = 0x1
)
type wchar uint16
type short int16
type dword uint32
@ -69,14 +78,17 @@ var (
procGetConsoleCursorInfo = kernel32.NewProc("GetConsoleCursorInfo")
procSetConsoleCursorInfo = kernel32.NewProc("SetConsoleCursorInfo")
procSetConsoleTitle = kernel32.NewProc("SetConsoleTitleW")
procCreateConsoleScreenBuffer = kernel32.NewProc("CreateConsoleScreenBuffer")
)
// Writer provide colorable Writer to the console
type Writer struct {
out io.Writer
handle syscall.Handle
oldattr word
oldpos coord
out io.Writer
handle syscall.Handle
althandle syscall.Handle
oldattr word
oldpos coord
rest bytes.Buffer
}
// NewColorable return new instance of Writer which handle escape sequence from File.
@ -407,7 +419,18 @@ func (w *Writer) Write(data []byte) (n int, err error) {
var csbi consoleScreenBufferInfo
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
er := bytes.NewReader(data)
handle := w.handle
var er *bytes.Reader
if w.rest.Len() > 0 {
var rest bytes.Buffer
w.rest.WriteTo(&rest)
w.rest.Reset()
rest.Write(data)
er = bytes.NewReader(rest.Bytes())
} else {
er = bytes.NewReader(data)
}
var bw [1]byte
loop:
for {
@ -425,29 +448,55 @@ loop:
break loop
}
if c2 == ']' {
if err := doTitleSequence(er); err != nil {
switch c2 {
case '>':
continue
case ']':
w.rest.WriteByte(c1)
w.rest.WriteByte(c2)
er.WriteTo(&w.rest)
if bytes.IndexByte(w.rest.Bytes(), 0x07) == -1 {
break loop
}
continue
}
if c2 != 0x5b {
continue
}
var buf bytes.Buffer
var m byte
for {
c, err := er.ReadByte()
er = bytes.NewReader(w.rest.Bytes()[2:])
err := doTitleSequence(er)
if err != nil {
break loop
}
w.rest.Reset()
continue
// https://github.com/mattn/go-colorable/issues/27
case '7':
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
w.oldpos = csbi.cursorPosition
continue
case '8':
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&w.oldpos)))
continue
case 0x5b:
// execute part after switch
default:
continue
}
w.rest.WriteByte(c1)
w.rest.WriteByte(c2)
er.WriteTo(&w.rest)
var buf bytes.Buffer
var m byte
for i, c := range w.rest.Bytes()[2:] {
if ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '@' {
m = c
er = bytes.NewReader(w.rest.Bytes()[2+i+1:])
w.rest.Reset()
break
}
buf.Write([]byte(string(c)))
}
if m == 0 {
break loop
}
switch m {
case 'A':
@ -455,61 +504,64 @@ loop:
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.y -= short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'B':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.y += short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'C':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.x += short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'D':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.x -= short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
if csbi.cursorPosition.x < 0 {
csbi.cursorPosition.x = 0
}
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'E':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.x = 0
csbi.cursorPosition.y += short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'F':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.x = 0
csbi.cursorPosition.y -= short(n)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'G':
n, err = strconv.Atoi(buf.String())
if err != nil {
continue
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
csbi.cursorPosition.x = short(n - 1)
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'H', 'f':
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
if buf.Len() > 0 {
token := strings.Split(buf.String(), ";")
switch len(token) {
@ -534,7 +586,7 @@ loop:
} else {
csbi.cursorPosition.y = 0
}
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&csbi.cursorPosition)))
case 'J':
n := 0
if buf.Len() > 0 {
@ -545,20 +597,20 @@ loop:
}
var count, written dword
var cursor coord
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
switch n {
case 0:
cursor = coord{x: csbi.cursorPosition.x, y: csbi.cursorPosition.y}
count = dword(csbi.size.x - csbi.cursorPosition.x + (csbi.size.y-csbi.cursorPosition.y)*csbi.size.x)
count = dword(csbi.size.x) - dword(csbi.cursorPosition.x) + dword(csbi.size.y-csbi.cursorPosition.y)*dword(csbi.size.x)
case 1:
cursor = coord{x: csbi.window.left, y: csbi.window.top}
count = dword(csbi.size.x - csbi.cursorPosition.x + (csbi.window.top-csbi.cursorPosition.y)*csbi.size.x)
count = dword(csbi.size.x) - dword(csbi.cursorPosition.x) + dword(csbi.window.top-csbi.cursorPosition.y)*dword(csbi.size.x)
case 2:
cursor = coord{x: csbi.window.left, y: csbi.window.top}
count = dword(csbi.size.x - csbi.cursorPosition.x + (csbi.size.y-csbi.cursorPosition.y)*csbi.size.x)
count = dword(csbi.size.x) - dword(csbi.cursorPosition.x) + dword(csbi.size.y-csbi.cursorPosition.y)*dword(csbi.size.x)
}
procFillConsoleOutputCharacter.Call(uintptr(w.handle), uintptr(' '), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputAttribute.Call(uintptr(w.handle), uintptr(csbi.attributes), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputCharacter.Call(uintptr(handle), uintptr(' '), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputAttribute.Call(uintptr(handle), uintptr(csbi.attributes), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
case 'K':
n := 0
if buf.Len() > 0 {
@ -567,28 +619,28 @@ loop:
continue
}
}
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
var cursor coord
var count, written dword
switch n {
case 0:
cursor = coord{x: csbi.cursorPosition.x + 1, y: csbi.cursorPosition.y}
count = dword(csbi.size.x - csbi.cursorPosition.x - 1)
cursor = coord{x: csbi.cursorPosition.x, y: csbi.cursorPosition.y}
count = dword(csbi.size.x - csbi.cursorPosition.x)
case 1:
cursor = coord{x: csbi.window.left, y: csbi.window.top + csbi.cursorPosition.y}
cursor = coord{x: csbi.window.left, y: csbi.cursorPosition.y}
count = dword(csbi.size.x - csbi.cursorPosition.x)
case 2:
cursor = coord{x: csbi.window.left, y: csbi.window.top + csbi.cursorPosition.y}
cursor = coord{x: csbi.window.left, y: csbi.cursorPosition.y}
count = dword(csbi.size.x)
}
procFillConsoleOutputCharacter.Call(uintptr(w.handle), uintptr(' '), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputAttribute.Call(uintptr(w.handle), uintptr(csbi.attributes), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputCharacter.Call(uintptr(handle), uintptr(' '), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
procFillConsoleOutputAttribute.Call(uintptr(handle), uintptr(csbi.attributes), uintptr(count), *(*uintptr)(unsafe.Pointer(&cursor)), uintptr(unsafe.Pointer(&written)))
case 'm':
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
attr := csbi.attributes
cs := buf.String()
if cs == "" {
procSetConsoleTextAttribute.Call(uintptr(w.handle), uintptr(w.oldattr))
procSetConsoleTextAttribute.Call(uintptr(handle), uintptr(w.oldattr))
continue
}
token := strings.Split(cs, ";")
@ -627,6 +679,21 @@ loop:
attr |= n256foreAttr[n256]
i += 2
}
} else if len(token) == 5 && token[i+1] == "2" {
var r, g, b int
r, _ = strconv.Atoi(token[i+2])
g, _ = strconv.Atoi(token[i+3])
b, _ = strconv.Atoi(token[i+4])
i += 4
if r > 127 {
attr |= foregroundRed
}
if g > 127 {
attr |= foregroundGreen
}
if b > 127 {
attr |= foregroundBlue
}
} else {
attr = attr & (w.oldattr & backgroundMask)
}
@ -654,6 +721,21 @@ loop:
attr |= n256backAttr[n256]
i += 2
}
} else if len(token) == 5 && token[i+1] == "2" {
var r, g, b int
r, _ = strconv.Atoi(token[i+2])
g, _ = strconv.Atoi(token[i+3])
b, _ = strconv.Atoi(token[i+4])
i += 4
if r > 127 {
attr |= backgroundRed
}
if g > 127 {
attr |= backgroundGreen
}
if b > 127 {
attr |= backgroundBlue
}
} else {
attr = attr & (w.oldattr & foregroundMask)
}
@ -685,38 +767,52 @@ loop:
attr |= backgroundBlue
}
}
procSetConsoleTextAttribute.Call(uintptr(w.handle), uintptr(attr))
procSetConsoleTextAttribute.Call(uintptr(handle), uintptr(attr))
}
}
case 'h':
var ci consoleCursorInfo
cs := buf.String()
if cs == "5>" {
procGetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procGetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
ci.visible = 0
procSetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procSetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
} else if cs == "?25" {
procGetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procGetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
ci.visible = 1
procSetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procSetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
} else if cs == "?1049" {
if w.althandle == 0 {
h, _, _ := procCreateConsoleScreenBuffer.Call(uintptr(genericRead|genericWrite), 0, 0, uintptr(consoleTextmodeBuffer), 0, 0)
w.althandle = syscall.Handle(h)
if w.althandle != 0 {
handle = w.althandle
}
}
}
case 'l':
var ci consoleCursorInfo
cs := buf.String()
if cs == "5>" {
procGetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procGetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
ci.visible = 1
procSetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procSetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
} else if cs == "?25" {
procGetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procGetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
ci.visible = 0
procSetConsoleCursorInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&ci)))
procSetConsoleCursorInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&ci)))
} else if cs == "?1049" {
if w.althandle != 0 {
syscall.CloseHandle(w.althandle)
w.althandle = 0
handle = w.handle
}
}
case 's':
procGetConsoleScreenBufferInfo.Call(uintptr(w.handle), uintptr(unsafe.Pointer(&csbi)))
procGetConsoleScreenBufferInfo.Call(uintptr(handle), uintptr(unsafe.Pointer(&csbi)))
w.oldpos = csbi.cursorPosition
case 'u':
procSetConsoleCursorPosition.Call(uintptr(w.handle), *(*uintptr)(unsafe.Pointer(&w.oldpos)))
procSetConsoleCursorPosition.Call(uintptr(handle), *(*uintptr)(unsafe.Pointer(&w.oldpos)))
}
}

3
vendor/github.com/mattn/go-colorable/go.mod generated vendored Normal file
View file

@ -0,0 +1,3 @@
module github.com/mattn/go-colorable
require github.com/mattn/go-isatty v0.0.8

4
vendor/github.com/mattn/go-colorable/go.sum generated vendored Normal file
View file

@ -0,0 +1,4 @@
github.com/mattn/go-isatty v0.0.5 h1:tHXDdz1cpzGaovsTB+TVB8q90WEokoVmfMqoVcrLUgw=
github.com/mattn/go-isatty v0.0.5/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223 h1:DH4skfRX4EBpamg7iV4ZlCpblAHI6s6TDM39bFZumv8=
golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=

3
vendor/github.com/mattn/go-isatty/go.mod generated vendored Normal file
View file

@ -0,0 +1,3 @@
module github.com/mattn/go-isatty
require golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a

2
vendor/github.com/mattn/go-isatty/go.sum generated vendored Normal file
View file

@ -0,0 +1,2 @@
golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a h1:aYOabOQFp6Vj6W1F80affTUvO9UxmJRx8K0gsfABByQ=
golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=

View file

@ -1,5 +1,4 @@
// +build linux
// +build !appengine,!ppc64,!ppc64le
// +build android
package isatty
@ -16,3 +15,9 @@ func IsTerminal(fd uintptr) bool {
_, _, err := syscall.Syscall6(syscall.SYS_IOCTL, fd, ioctlReadTermios, uintptr(unsafe.Pointer(&termios)), 0, 0, 0)
return err == 0
}
// IsCygwinTerminal return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false
}

View file

@ -1,15 +0,0 @@
// +build appengine
package isatty
// IsTerminal returns true if the file descriptor is terminal which
// is always false on on appengine classic which is a sandboxed PaaS.
func IsTerminal(fd uintptr) bool {
return false
}
// IsCygwinTerminal() return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false
}

View file

@ -16,3 +16,9 @@ func IsTerminal(fd uintptr) bool {
_, _, err := syscall.Syscall6(syscall.SYS_IOCTL, fd, ioctlReadTermios, uintptr(unsafe.Pointer(&termios)), 0, 0, 0)
return err == 0
}
// IsCygwinTerminal return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false
}

View file

@ -1,19 +0,0 @@
// +build linux
// +build ppc64 ppc64le
package isatty
import (
"unsafe"
syscall "golang.org/x/sys/unix"
)
const ioctlReadTermios = syscall.TCGETS
// IsTerminal return true if the file descriptor is terminal.
func IsTerminal(fd uintptr) bool {
var termios syscall.Termios
_, _, err := syscall.Syscall6(syscall.SYS_IOCTL, fd, ioctlReadTermios, uintptr(unsafe.Pointer(&termios)), 0, 0, 0)
return err == 0
}

View file

@ -1,9 +1,14 @@
// +build !windows
// +build !appengine
// +build appengine js nacl
package isatty
// IsCygwinTerminal return true if the file descriptor is a cygwin or msys2
// IsTerminal returns true if the file descriptor is terminal which
// is always false on js and appengine classic which is a sandboxed PaaS.
func IsTerminal(fd uintptr) bool {
return false
}
// IsCygwinTerminal() return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false

View file

@ -14,3 +14,9 @@ func IsTerminal(fd uintptr) bool {
err := unix.IoctlSetTermio(int(fd), unix.TCGETA, &termio)
return err == nil
}
// IsCygwinTerminal return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false
}

19
vendor/github.com/mattn/go-isatty/isatty_tcgets.go generated vendored Normal file
View file

@ -0,0 +1,19 @@
// +build linux aix
// +build !appengine
// +build !android
package isatty
import "golang.org/x/sys/unix"
// IsTerminal return true if the file descriptor is terminal.
func IsTerminal(fd uintptr) bool {
_, err := unix.IoctlGetTermios(int(fd), unix.TCGETS)
return err == nil
}
// IsCygwinTerminal return true if the file descriptor is a cygwin or msys2
// terminal. This is also always false on this environment.
func IsCygwinTerminal(fd uintptr) bool {
return false
}

View file

@ -1,191 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.
"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.
"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.
2. Grant of Copyright License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.
3. Grant of Patent License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.
4. Redistribution.
You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:
You must give any other recipients of the Work or Derivative Works a copy of
this License; and
You must cause any modified files to carry prominent notices stating that You
changed the files; and
You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and
If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works that
You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as
modifying the License.
You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.
5. Submission of Contributions.
Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.
6. Trademarks.
This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.
7. Disclaimer of Warranty.
Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.
8. Limitation of Liability.
In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability.
While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work
To apply the Apache License to your work, attach the following boilerplate
notice, with the fields enclosed by brackets "[]" replaced with your own
identifying information. (Don't include the brackets!) The text should be
enclosed in the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of purpose be included on
the same "printed page" as the copyright notice for easier identification within
third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View file

@ -1 +0,0 @@
Paul Borman <borman@google.com>

View file

@ -1,27 +0,0 @@
Copyright (c) 2009,2014 Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -760,7 +760,7 @@ func (driver *MesosSchedulerDriver) exitedExecutor(_ context.Context, from *upid
return
}
status := msg.GetStatus()
log.V(2).Infoln("Lost executor %q from slave %q for framework %q with status %d",
log.V(2).Infof("Lost executor %q from slave %q for framework %q with status %d",
msg.GetExecutorId().GetValue(),
msg.GetSlaveId().GetValue(),
msg.GetFrameworkId().GetValue(),

View file

@ -1,17 +1,13 @@
language: go
go:
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- tip
- stable
- master
before_install:
- sudo pip install codecov
- go get github.com/mattn/goveralls
script:
- go test
- go test -v -covermode=count -coverprofile=coverage.out
after_success:
- codecov
- $GOPATH/bin/goveralls -coverprofile=coverage.out -service=travis-ci
notifications:
email:
recipients:

View file

@ -1,8 +1,9 @@
# Stats [![][travis-svg]][travis-url] [![][coveralls-svg]][coveralls-url] [![][godoc-svg]][godoc-url] [![][license-svg]][license-url]
# Stats [![][travis-svg]][travis-url] [![][coveralls-svg]][coveralls-url] [![][goreport-svg]][goreport-url] [![][godoc-svg]][godoc-url] [![][license-svg]][license-url]
A statistics package with many functions missing from the Golang standard library. See the [CHANGELOG.md](https://github.com/montanaflynn/stats/blob/master/CHANGELOG.md) for API changes and tagged releases you can vendor into your projects.
A well tested and comprehensive Golang statistics library package with no dependencies.
If you have any suggestions, problems or bug reports please [create an issue](https://github.com/montanaflynn/stats/issues) and I'll do my best to accommodate you. In addition simply starring the repo would show your support for the project and be very much appreciated!
> Statistics are used much like a drunk uses a lamppost: for support, not illumination. **- Vin Scully**
## Installation
@ -10,55 +11,130 @@ A statistics package with many functions missing from the Golang standard librar
go get github.com/montanaflynn/stats
```
**Protip:** `go get -u github.com/montanaflynn/stats` updates stats to the latest version.
## Example Usage
## Usage
All the functions can be seen in [examples/main.go](https://github.com/montanaflynn/stats/blob/master/examples/main.go) but here's a little taste:
```go
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
```
## Documentation
The [entire API documentation](http://godoc.org/github.com/montanaflynn/stats) is available on GoDoc.org
You can view docs offline with the following commands:
```
# Command line
godoc ./
godoc ./ Median
godoc ./ Float64Data
# Local website
godoc -http=:4444
open http://localhost:4444/pkg/github.com/montanaflynn/stats/
```
**Protip:** Generate HTML docs with `godoc -http=:4444`
## Example
All the functions can be seen in [examples/main.go](https://github.com/montanaflynn/stats/blob/master/examples/main.go) but here's a little taste:
The exported API is as follows:
```go
// start with the some source data to use
var data = []float64{1, 2, 3, 4, 4, 5}
var (
EmptyInputErr = statsErr{"Input must not be empty."}
NaNErr = statsErr{"Not a number."}
NegativeErr = statsErr{"Must not contain negative values."}
ZeroErr = statsErr{"Must not contain zero values."}
BoundsErr = statsErr{"Input is outside of range."}
SizeErr = statsErr{"Must be the same length."}
InfValue = statsErr{"Value is infinite."}
YCoordErr = statsErr{"Y Value must be greater than zero."}
)
median, _ := stats.Median(data)
fmt.Println(median) // 3.5
type Float64Data []float64
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
```
func LoadRawData(raw interface{}) (f Float64Data) {}
func AutoCorrelation(data Float64Data, lags int) (float64, error) {}
func ChebyshevDistance(dataPointX, dataPointY []float64) (distance float64, err error) {}
func Correlation(data1, data2 Float64Data) (float64, error) {}
func Covariance(data1, data2 Float64Data) (float64, error) {}
func CovariancePopulation(data1, data2 Float64Data) (float64, error) {}
func CumulativeSum(input Float64Data) ([]float64, error) {}
func EuclideanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {}
func GeometricMean(input Float64Data) (float64, error) {}
func HarmonicMean(input Float64Data) (float64, error) {}
func InterQuartileRange(input Float64Data) (float64, error) {}
func ManhattanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {}
func Max(input Float64Data) (max float64, err error) {}
func Mean(input Float64Data) (float64, error) {}
func Median(input Float64Data) (median float64, err error) {}
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {}
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {}
func Midhinge(input Float64Data) (float64, error) {}
func Min(input Float64Data) (min float64, err error) {}
func MinkowskiDistance(dataPointX, dataPointY []float64, lambda float64) (distance float64, err error) {}
func Mode(input Float64Data) (mode []float64, err error) {}
func Pearson(data1, data2 Float64Data) (float64, error) {}
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {}
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error) {}
func PopulationVariance(input Float64Data) (pvar float64, err error) {}
func Round(input float64, places int) (rounded float64, err error) {}
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {}
func SampleVariance(input Float64Data) (svar float64, err error) {}
func Sigmoid(input Float64Data) ([]float64, error) {}
func SoftMax(input Float64Data) ([]float64, error) {}
func StandardDeviation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {}
func StdDevP(input Float64Data) (sdev float64, err error) {}
func StdDevS(input Float64Data) (sdev float64, err error) {}
func Sum(input Float64Data) (sum float64, err error) {}
func Trimean(input Float64Data) (float64, error) {}
func VarP(input Float64Data) (sdev float64, err error) {}
func VarS(input Float64Data) (sdev float64, err error) {}
func Variance(input Float64Data) (sdev float64, err error) {}
**Protip:** You can [call methods](https://github.com/montanaflynn/stats/blob/master/examples/methods.go) on the data if using the Float64Data type:
type Coordinate struct {
X, Y float64
}
```
var d stats.Float64Data = data
type Series []Coordinate
max, _ := d.Max()
fmt.Println(max) // 5
func ExponentialRegression(s Series) (regressions Series, err error) {}
func LinearRegression(s Series) (regressions Series, err error) {}
func LogarithmicRegression(s Series) (regressions Series, err error) {}
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
func Quartile(input Float64Data) (Quartiles, error) {}
func QuartileOutliers(input Float64Data) (Outliers, error) {}
```
## Contributing
If you have any suggestions, criticism or bug reports please [create an issue](https://github.com/montanaflynn/stats/issues) and I'll do my best to accommodate you. In addition simply starring the repo would show your support for the project and be very much appreciated!
Pull request are always welcome no matter how big or small. I've included a [Makefile](https://github.com/montanaflynn/stats/blob/master/Makefile) that has a lot of helper targets for common actions such as linting, testing, code coverage reporting and more.
### Pull Requests
Pull request are always welcome no matter how big or small. Here's an easy way to do it:
1. Fork it and clone your fork
1. Fork the repo and clone your fork
2. Create new branch (`git checkout -b some-thing`)
3. Make the desired changes
4. Ensure tests pass (`go test -cover` or `make test`)
@ -68,21 +144,14 @@ Pull request are always welcome no matter how big or small. Here's an easy way t
To make things as seamless as possible please also consider the following steps:
- Update `README.md` to include new public types or functions in the documentation section.
- Update `examples/main.go` with a simple example of the new feature.
- Keep 100% code coverage (you can check with `make coverage`).
- Run [`gometalinter`](https://github.com/alecthomas/gometalinter) and make your code pass.
- Squash needless commits into single units of work with `git rebase -i new-feature`.
#### Makefile
I've included a [Makefile](https://github.com/montanaflynn/stats/blob/master/Makefile) that has a lot of helper targets for common actions such as linting, testing, code coverage reporting and more.
**Protip:** `watch -n 1 make check` will continuously format and test your code.
- Update `examples/main.go` with a simple example of the new feature
- Update `README.md` documentation section with any new exported API
- Keep 100% code coverage (you can check with `make coverage`)
- Squash commits into single units of work with `git rebase -i new-feature`
## MIT License
Copyright (c) 2014-2015 Montana Flynn <http://anonfunction.com>
Copyright (c) 2014-2019 Montana Flynn <http://anonfunction.com>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
@ -96,6 +165,9 @@ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLI
[coveralls-url]: https://coveralls.io/r/montanaflynn/stats?branch=master
[coveralls-svg]: https://img.shields.io/coveralls/montanaflynn/stats.svg
[goreport-url]: https://goreportcard.com/report/github.com/montanaflynn/stats
[goreport-svg]: https://goreportcard.com/badge/github.com/montanaflynn/stats
[godoc-url]: https://godoc.org/github.com/montanaflynn/stats
[godoc-svg]: https://godoc.org/github.com/montanaflynn/stats?status.svg

View file

@ -1,6 +1,8 @@
package stats
import "math"
import (
"math"
)
// Correlation describes the degree of relationship between two sets of data
func Correlation(data1, data2 Float64Data) (float64, error) {
@ -9,7 +11,7 @@ func Correlation(data1, data2 Float64Data) (float64, error) {
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
if l1 != l2 {
@ -27,7 +29,32 @@ func Correlation(data1, data2 Float64Data) (float64, error) {
return covp / (sdev1 * sdev2), nil
}
// Pearson calculates the Pearson product-moment correlation coefficient between two variables.
// Pearson calculates the Pearson product-moment correlation coefficient between two variables
func Pearson(data1, data2 Float64Data) (float64, error) {
return Correlation(data1, data2)
}
// Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
func AutoCorrelation(data Float64Data, lags int) (float64, error) {
if len(data) < 1 {
return 0, EmptyInputErr
}
mean, _ := Mean(data)
var result, q float64
for i := 0; i < lags; i++ {
v := (data[0] - mean) * (data[0] - mean)
for i := 1; i < len(data); i++ {
delta0 := data[i-1] - mean
delta1 := data[i] - mean
q += (delta0*delta1 - q) / float64(i+1)
v += (delta1*delta1 - v) / float64(i+1)
}
result = q / v
}
return result, nil
}

21
vendor/github.com/montanaflynn/stats/cumulative_sum.go generated vendored Normal file
View file

@ -0,0 +1,21 @@
package stats
// CumulativeSum calculates the cumulative sum of the input slice
func CumulativeSum(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
cumSum := make([]float64, input.Len())
for i, val := range input {
if i == 0 {
cumSum[i] = val
} else {
cumSum[i] = cumSum[i-1] + val
}
}
return cumSum, nil
}

View file

@ -24,6 +24,9 @@ func (f Float64Data) Max() (float64, error) { return Max(f) }
// Sum returns the total of all the numbers in the data
func (f Float64Data) Sum() (float64, error) { return Sum(f) }
// CumulativeSum returns the cumulative sum of the data
func (f Float64Data) CumulativeSum() ([]float64, error) { return CumulativeSum(f) }
// Mean returns the mean of the data
func (f Float64Data) Mean() (float64, error) { return Mean(f) }
@ -84,6 +87,11 @@ func (f Float64Data) Correlation(d Float64Data) (float64, error) {
return Correlation(f, d)
}
// Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
func (f Float64Data) AutoCorrelation(lags int) (float64, error) {
return AutoCorrelation(f, lags)
}
// Pearson calculates the Pearson product-moment correlation coefficient between two variables.
func (f Float64Data) Pearson(d Float64Data) (float64, error) {
return Pearson(f, d)

View file

@ -10,7 +10,7 @@ func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {
// MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
i := copyslice(input)
@ -32,7 +32,7 @@ func StandardDeviation(input Float64Data) (sdev float64, err error) {
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the population variance
@ -46,7 +46,7 @@ func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the sample variance

View file

@ -7,7 +7,7 @@ import (
// Validate data for distance calculation
func validateData(dataPointX, dataPointY []float64) error {
if len(dataPointX) == 0 || len(dataPointY) == 0 {
return EmptyInput
return EmptyInputErr
}
if len(dataPointX) != len(dataPointY) {
@ -16,7 +16,7 @@ func validateData(dataPointX, dataPointY []float64) error {
return nil
}
// Computes Chebyshev distance between two data sets
// ChebyshevDistance computes the Chebyshev distance between two data sets
func ChebyshevDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
@ -32,9 +32,7 @@ func ChebyshevDistance(dataPointX, dataPointY []float64) (distance float64, err
return distance, nil
}
//
// Computes Euclidean distance between two data sets
//
// EuclideanDistance computes the Euclidean distance between two data sets
func EuclideanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
@ -48,9 +46,7 @@ func EuclideanDistance(dataPointX, dataPointY []float64) (distance float64, err
return math.Sqrt(distance), nil
}
//
// Computes Manhattan distance between two data sets
//
// ManhattanDistance computes the Manhattan distance between two data sets
func ManhattanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
@ -63,10 +59,9 @@ func ManhattanDistance(dataPointX, dataPointY []float64) (distance float64, err
return distance, nil
}
// MinkowskiDistance computes the Minkowski distance between two data sets
//
// Computes minkowski distance between two data sets.
//
// Input:
// Arguments:
// dataPointX: First set of data points
// dataPointY: Second set of data points. Length of both data
// sets must be equal.
@ -75,9 +70,8 @@ func ManhattanDistance(dataPointX, dataPointY []float64) (distance float64, err
// lambda = 2; it is euclidean distance. Lambda
// reaching to infinite - distance would be chebysev
// distance.
// Output:
// Return:
// Distance or error
//
func MinkowskiDistance(dataPointX, dataPointY []float64, lambda float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
@ -86,8 +80,8 @@ func MinkowskiDistance(dataPointX, dataPointY []float64, lambda float64) (distan
for i := 0; i < len(dataPointY); i++ {
distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
}
distance = math.Pow(distance, float64(1/lambda))
if math.IsInf(distance, 1) == true {
distance = math.Pow(distance, 1/lambda)
if math.IsInf(distance, 1) {
return math.NaN(), InfValue
}
return distance, nil

View file

@ -8,15 +8,19 @@ func (s statsErr) Error() string {
return s.err
}
func (s statsErr) String() string {
return s.err
}
// These are the package-wide error values.
// All error identification should use these values.
var (
EmptyInput = statsErr{"Input must not be empty."}
SampleSize = statsErr{"Samples number must be less than input length."}
NaNErr = statsErr{"Not a number"}
NegativeErr = statsErr{"Slice must not contain negative values."}
ZeroErr = statsErr{"Slice must not contain zero values."}
BoundsErr = statsErr{"Input is outside of range."}
SizeErr = statsErr{"Slices must be the same length."}
InfValue = statsErr{"Value is infinite."}
EmptyInputErr = statsErr{"Input must not be empty."}
NaNErr = statsErr{"Not a number."}
NegativeErr = statsErr{"Must not contain negative values."}
ZeroErr = statsErr{"Must not contain zero values."}
BoundsErr = statsErr{"Input is outside of range."}
SizeErr = statsErr{"Must be the same length."}
InfValue = statsErr{"Value is infinite."}
YCoordErr = statsErr{"Y Value must be greater than zero."}
)

View file

@ -34,3 +34,6 @@ func ExpReg(s []Coordinate) (regressions []Coordinate, err error) {
func LogReg(s []Coordinate) (regressions []Coordinate, err error) {
return LogarithmicRegression(s)
}
// EmptyInput legacy error name didn't end with Err
var EmptyInput = EmptyInputErr

View file

@ -40,7 +40,7 @@ func LoadRawData(raw interface{}) (f Float64Data) {
return s
case []bool:
for _, v := range t {
if v == true {
if v {
s = append(s, 1.0)
} else {
s = append(s, 0.0)
@ -138,7 +138,7 @@ func LoadRawData(raw interface{}) (f Float64Data) {
return s
case map[int]bool:
for i := 0; i < len(t); i++ {
if t[i] == true {
if t[i] {
s = append(s, 1.0)
} else {
s = append(s, 0.0)
@ -171,7 +171,7 @@ func LoadRawData(raw interface{}) (f Float64Data) {
f = append(f, fl)
}
case bool:
if t == true {
if t {
f = append(f, 1.0)
} else {
f = append(f, 0.0)

View file

@ -1,13 +1,15 @@
package stats
import "math"
import (
"math"
)
// Max finds the highest number in a slice
func Max(input Float64Data) (max float64, err error) {
// Return an error if there are no numbers
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the first value as the starting point

View file

@ -6,7 +6,7 @@ import "math"
func Mean(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
sum, _ := input.Sum()
@ -19,7 +19,7 @@ func GeometricMean(input Float64Data) (float64, error) {
l := input.Len()
if l == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the product of all the numbers
@ -41,7 +41,7 @@ func HarmonicMean(input Float64Data) (float64, error) {
l := input.Len()
if l == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the sum of all the numbers reciprocals and return an

View file

@ -14,11 +14,11 @@ func Median(input Float64Data) (median float64, err error) {
// For odd numbers we just use the middle number
l := len(c)
if l == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
} else if l%2 == 0 {
median, _ = Mean(c[l/2-1 : l/2+1])
} else {
median = float64(c[l/2])
median = c[l/2]
}
return median, nil

View file

@ -10,7 +10,7 @@ func Min(input Float64Data) (min float64, err error) {
// Return an error if there are no numbers
if l == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Get the first value as the starting point

View file

@ -7,7 +7,7 @@ func Mode(input Float64Data) (mode []float64, err error) {
if l == 1 {
return input, nil
} else if l == 0 {
return nil, EmptyInput
return nil, EmptyInputErr
}
c := sortedCopyDif(input)

View file

@ -9,7 +9,7 @@ type Outliers struct {
// QuartileOutliers finds the mild and extreme outliers
func QuartileOutliers(input Float64Data) (Outliers, error) {
if input.Len() == 0 {
return Outliers{}, EmptyInput
return Outliers{}, EmptyInputErr
}
// Start by sorting a copy of the slice

View file

@ -1,12 +1,14 @@
package stats
import "math"
import (
"math"
)
// Percentile finds the relative standing in a slice of floats
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
if percent <= 0 || percent > 100 {
@ -52,7 +54,7 @@ func PercentileNearestRank(input Float64Data, percent float64) (percentile float
// Return an error for empty slices
if il == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Return error for less than 0 or greater than 100 percentages

View file

@ -14,7 +14,7 @@ func Quartile(input Float64Data) (Quartiles, error) {
il := input.Len()
if il == 0 {
return Quartiles{}, EmptyInput
return Quartiles{}, EmptyInputErr
}
// Start by sorting a copy of the slice
@ -44,7 +44,7 @@ func Quartile(input Float64Data) (Quartiles, error) {
// InterQuartileRange finds the range between Q1 and Q3
func InterQuartileRange(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
qs, _ := Quartile(input)
iqr := qs.Q3 - qs.Q1
@ -54,7 +54,7 @@ func InterQuartileRange(input Float64Data) (float64, error) {
// Midhinge finds the average of the first and third quartiles
func Midhinge(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
qs, _ := Quartile(input)
mh := (qs.Q1 + qs.Q3) / 2
@ -64,7 +64,7 @@ func Midhinge(input Float64Data) (float64, error) {
// Trimean finds the average of the median and the midhinge
func Trimean(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
c := sortedCopy(input)

View file

@ -14,7 +14,7 @@ type Coordinate struct {
func LinearRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInput
return nil, EmptyInputErr
}
// Placeholder for the math to be done
@ -44,19 +44,21 @@ func LinearRegression(s Series) (regressions Series, err error) {
}
return regressions, nil
}
// ExponentialRegression returns an exponential regression on data series
func ExponentialRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInput
return nil, EmptyInputErr
}
var sum [6]float64
for i := 0; i < len(s); i++ {
if s[i].Y < 0 {
return nil, YCoordErr
}
sum[0] += s[i].X
sum[1] += s[i].Y
sum[2] += s[i].X * s[i].X * s[i].Y
@ -77,14 +79,13 @@ func ExponentialRegression(s Series) (regressions Series, err error) {
}
return regressions, nil
}
// LogarithmicRegression returns an logarithmic regression on data series
func LogarithmicRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInput
return nil, EmptyInputErr
}
var sum [4]float64
@ -109,5 +110,4 @@ func LogarithmicRegression(s Series) (regressions Series, err error) {
}
return regressions, nil
}

View file

@ -6,7 +6,7 @@ import "math/rand"
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {
if input.Len() == 0 {
return nil, EmptyInput
return nil, EmptyInputErr
}
length := input.Len()

18
vendor/github.com/montanaflynn/stats/sigmoid.go generated vendored Normal file
View file

@ -0,0 +1,18 @@
package stats
import "math"
// Sigmoid returns the input values in the range of -1 to 1
// along the sigmoid or s-shaped curve, commonly used in
// machine learning while training neural networks as an
// activation function.
func Sigmoid(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
s := make([]float64, len(input))
for i, v := range input {
s[i] = 1 / (1 + math.Exp(-v))
}
return s, nil
}

25
vendor/github.com/montanaflynn/stats/softmax.go generated vendored Normal file
View file

@ -0,0 +1,25 @@
package stats
import "math"
// SoftMax returns the input values in the range of 0 to 1
// with sum of all the probabilities being equal to one. It
// is commonly used in machine learning neural networks.
func SoftMax(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
s := 0.0
c, _ := Max(input)
for _, e := range input {
s += math.Exp(e - c)
}
sm := make([]float64, len(input))
for i, v := range input {
sm[i] = math.Exp(v-c) / s
}
return sm, nil
}

View file

@ -6,7 +6,7 @@ import "math"
func Sum(input Float64Data) (sum float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Add em up

View file

@ -6,14 +6,14 @@ import "math"
func _variance(input Float64Data, sample int) (variance float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
// Sum the square of the mean subtracted from each number
m, _ := Mean(input)
for _, n := range input {
variance += (float64(n) - m) * (float64(n) - m)
variance += (n - m) * (n - m)
}
// When getting the mean of the squared differences
@ -56,7 +56,7 @@ func Covariance(data1, data2 Float64Data) (float64, error) {
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
if l1 != l2 {
@ -84,7 +84,7 @@ func CovariancePopulation(data1, data2 Float64Data) (float64, error) {
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInput
return math.NaN(), EmptyInputErr
}
if l1 != l2 {

3
vendor/github.com/pborman/uuid/go.mod generated vendored Normal file
View file

@ -0,0 +1,3 @@
module github.com/pborman/uuid
require github.com/google/uuid v1.0.0

2
vendor/github.com/pborman/uuid/go.sum generated vendored Normal file
View file

@ -0,0 +1,2 @@
github.com/google/uuid v1.0.0 h1:b4Gk+7WdP/d3HZH8EJsZpvV7EtDOgaZLtnaNGIu1adA=
github.com/google/uuid v1.0.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=

View file

@ -54,9 +54,8 @@ func New() string {
return NewRandom().String()
}
// Parse decodes s into a UUID or returns nil. Both the UUID form of
// xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx and
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx are decoded.
// Parse decodes s into a UUID or returns nil. See github.com/google/uuid for
// the formats parsed.
func Parse(s string) UUID {
gu, err := guuid.Parse(s)
if err == nil {

View file

@ -1,10 +1,14 @@
language: go
go_import_path: github.com/pkg/errors
go:
- 1.4.3
- 1.5.4
- 1.6.2
- 1.7.1
- 1.4.x
- 1.5.x
- 1.6.x
- 1.7.x
- 1.8.x
- 1.9.x
- 1.10.x
- 1.11.x
- tip
script:

View file

@ -1,4 +1,4 @@
# errors [![Travis-CI](https://travis-ci.org/pkg/errors.svg)](https://travis-ci.org/pkg/errors) [![AppVeyor](https://ci.appveyor.com/api/projects/status/b98mptawhudj53ep/branch/master?svg=true)](https://ci.appveyor.com/project/davecheney/errors/branch/master) [![GoDoc](https://godoc.org/github.com/pkg/errors?status.svg)](http://godoc.org/github.com/pkg/errors) [![Report card](https://goreportcard.com/badge/github.com/pkg/errors)](https://goreportcard.com/report/github.com/pkg/errors)
# errors [![Travis-CI](https://travis-ci.org/pkg/errors.svg)](https://travis-ci.org/pkg/errors) [![AppVeyor](https://ci.appveyor.com/api/projects/status/b98mptawhudj53ep/branch/master?svg=true)](https://ci.appveyor.com/project/davecheney/errors/branch/master) [![GoDoc](https://godoc.org/github.com/pkg/errors?status.svg)](http://godoc.org/github.com/pkg/errors) [![Report card](https://goreportcard.com/badge/github.com/pkg/errors)](https://goreportcard.com/report/github.com/pkg/errors) [![Sourcegraph](https://sourcegraph.com/github.com/pkg/errors/-/badge.svg)](https://sourcegraph.com/github.com/pkg/errors?badge)
Package errors provides simple error handling primitives.
@ -47,6 +47,6 @@ We welcome pull requests, bug fixes and issue reports. With that said, the bar f
Before proposing a change, please discuss your change by raising an issue.
## Licence
## License
BSD-2-Clause

View file

@ -6,7 +6,7 @@
// return err
// }
//
// which applied recursively up the call stack results in error reports
// which when applied recursively up the call stack results in error reports
// without context or debugging information. The errors package allows
// programmers to add context to the failure path in their code in a way
// that does not destroy the original value of the error.
@ -15,16 +15,17 @@
//
// The errors.Wrap function returns a new error that adds context to the
// original error by recording a stack trace at the point Wrap is called,
// and the supplied message. For example
// together with the supplied message. For example
//
// _, err := ioutil.ReadAll(r)
// if err != nil {
// return errors.Wrap(err, "read failed")
// }
//
// If additional control is required the errors.WithStack and errors.WithMessage
// functions destructure errors.Wrap into its component operations of annotating
// an error with a stack trace and an a message, respectively.
// If additional control is required, the errors.WithStack and
// errors.WithMessage functions destructure errors.Wrap into its component
// operations: annotating an error with a stack trace and with a message,
// respectively.
//
// Retrieving the cause of an error
//
@ -38,7 +39,7 @@
// }
//
// can be inspected by errors.Cause. errors.Cause will recursively retrieve
// the topmost error which does not implement causer, which is assumed to be
// the topmost error that does not implement causer, which is assumed to be
// the original cause. For example:
//
// switch err := errors.Cause(err).(type) {
@ -48,16 +49,16 @@
// // unknown error
// }
//
// causer interface is not exported by this package, but is considered a part
// of stable public API.
// Although the causer interface is not exported by this package, it is
// considered a part of its stable public interface.
//
// Formatted printing of errors
//
// All error values returned from this package implement fmt.Formatter and can
// be formatted by the fmt package. The following verbs are supported
// be formatted by the fmt package. The following verbs are supported:
//
// %s print the error. If the error has a Cause it will be
// printed recursively
// printed recursively.
// %v see %s
// %+v extended format. Each Frame of the error's StackTrace will
// be printed in detail.
@ -65,13 +66,13 @@
// Retrieving the stack trace of an error or wrapper
//
// New, Errorf, Wrap, and Wrapf record a stack trace at the point they are
// invoked. This information can be retrieved with the following interface.
// invoked. This information can be retrieved with the following interface:
//
// type stackTracer interface {
// StackTrace() errors.StackTrace
// }
//
// Where errors.StackTrace is defined as
// The returned errors.StackTrace type is defined as
//
// type StackTrace []Frame
//
@ -85,8 +86,8 @@
// }
// }
//
// stackTracer interface is not exported by this package, but is considered a part
// of stable public API.
// Although the stackTracer interface is not exported by this package, it is
// considered a part of its stable public interface.
//
// See the documentation for Frame.Format for more details.
package errors
@ -192,7 +193,7 @@ func Wrap(err error, message string) error {
}
// Wrapf returns an error annotating err with a stack trace
// at the point Wrapf is call, and the format specifier.
// at the point Wrapf is called, and the format specifier.
// If err is nil, Wrapf returns nil.
func Wrapf(err error, format string, args ...interface{}) error {
if err == nil {
@ -220,6 +221,18 @@ func WithMessage(err error, message string) error {
}
}
// WithMessagef annotates err with the format specifier.
// If err is nil, WithMessagef returns nil.
func WithMessagef(err error, format string, args ...interface{}) error {
if err == nil {
return nil
}
return &withMessage{
cause: err,
msg: fmt.Sprintf(format, args...),
}
}
type withMessage struct {
cause error
msg string

View file

@ -46,7 +46,8 @@ func (f Frame) line() int {
//
// Format accepts flags that alter the printing of some verbs, as follows:
//
// %+s path of source file relative to the compile time GOPATH
// %+s function name and path of source file relative to the compile time
// GOPATH separated by \n\t (<funcname>\n\t<path>)
// %+v equivalent to %+s:%d
func (f Frame) Format(s fmt.State, verb rune) {
switch verb {
@ -79,6 +80,14 @@ func (f Frame) Format(s fmt.State, verb rune) {
// StackTrace is stack of Frames from innermost (newest) to outermost (oldest).
type StackTrace []Frame
// Format formats the stack of Frames according to the fmt.Formatter interface.
//
// %s lists source files for each Frame in the stack
// %v lists the source file and line number for each Frame in the stack
//
// Format accepts flags that alter the printing of some verbs, as follows:
//
// %+v Prints filename, function, and line number for each Frame in the stack.
func (st StackTrace) Format(s fmt.State, verb rune) {
switch verb {
case 'v':
@ -136,43 +145,3 @@ func funcname(name string) string {
i = strings.Index(name, ".")
return name[i+1:]
}
func trimGOPATH(name, file string) string {
// Here we want to get the source file path relative to the compile time
// GOPATH. As of Go 1.6.x there is no direct way to know the compiled
// GOPATH at runtime, but we can infer the number of path segments in the
// GOPATH. We note that fn.Name() returns the function name qualified by
// the import path, which does not include the GOPATH. Thus we can trim
// segments from the beginning of the file path until the number of path
// separators remaining is one more than the number of path separators in
// the function name. For example, given:
//
// GOPATH /home/user
// file /home/user/src/pkg/sub/file.go
// fn.Name() pkg/sub.Type.Method
//
// We want to produce:
//
// pkg/sub/file.go
//
// From this we can easily see that fn.Name() has one less path separator
// than our desired output. We count separators from the end of the file
// path until it finds two more than in the function name and then move
// one character forward to preserve the initial path segment without a
// leading separator.
const sep = "/"
goal := strings.Count(name, sep) + 2
i := len(file)
for n := 0; n < goal; n++ {
i = strings.LastIndex(file[:i], sep)
if i == -1 {
// not enough separators found, set i so that the slice expression
// below leaves file unmodified
i = -len(sep)
break
}
}
// get back to 0 or trim the leading separator
file = file[i+len(sep):]
return file
}

27
vendor/github.com/pmezard/go-difflib/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2013, Patrick Mezard
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

772
vendor/github.com/pmezard/go-difflib/difflib/difflib.go generated vendored Normal file
View file

@ -0,0 +1,772 @@
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package difflib
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
type Match struct {
A int
B int
Size int
}
type OpCode struct {
Tag byte
I1 int
I2 int
J1 int
J2 int
}
// SequenceMatcher compares sequence of strings. The basic
// algorithm predates, and is a little fancier than, an algorithm
// published in the late 1980's by Ratcliff and Obershelp under the
// hyperbolic name "gestalt pattern matching". The basic idea is to find
// the longest contiguous matching subsequence that contains no "junk"
// elements (R-O doesn't address junk). The same idea is then applied
// recursively to the pieces of the sequences to the left and to the right
// of the matching subsequence. This does not yield minimal edit
// sequences, but does tend to yield matches that "look right" to people.
//
// SequenceMatcher tries to compute a "human-friendly diff" between two
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
// longest *contiguous* & junk-free matching subsequence. That's what
// catches peoples' eyes. The Windows(tm) windiff has another interesting
// notion, pairing up elements that appear uniquely in each sequence.
// That, and the method here, appear to yield more intuitive difference
// reports than does diff. This method appears to be the least vulnerable
// to synching up on blocks of "junk lines", though (like blank lines in
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
// because this is the only method of the 3 that has a *concept* of
// "junk" <wink>.
//
// Timing: Basic R-O is cubic time worst case and quadratic time expected
// case. SequenceMatcher is quadratic time for the worst case and has
// expected-case behavior dependent in a complicated way on how many
// elements the sequences have in common; best case time is linear.
type SequenceMatcher struct {
a []string
b []string
b2j map[string][]int
IsJunk func(string) bool
autoJunk bool
bJunk map[string]struct{}
matchingBlocks []Match
fullBCount map[string]int
bPopular map[string]struct{}
opCodes []OpCode
}
func NewMatcher(a, b []string) *SequenceMatcher {
m := SequenceMatcher{autoJunk: true}
m.SetSeqs(a, b)
return &m
}
func NewMatcherWithJunk(a, b []string, autoJunk bool,
isJunk func(string) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b []string) {
m.SetSeq1(a)
m.SetSeq2(b)
}
// Set the first sequence to be compared. The second sequence to be compared is
// not changed.
//
// SequenceMatcher computes and caches detailed information about the second
// sequence, so if you want to compare one sequence S against many sequences,
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
// sequences.
//
// See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq1(a []string) {
if &a == &m.a {
return
}
m.a = a
m.matchingBlocks = nil
m.opCodes = nil
}
// Set the second sequence to be compared. The first sequence to be compared is
// not changed.
func (m *SequenceMatcher) SetSeq2(b []string) {
if &b == &m.b {
return
}
m.b = b
m.matchingBlocks = nil
m.opCodes = nil
m.fullBCount = nil
m.chainB()
}
func (m *SequenceMatcher) chainB() {
// Populate line -> index mapping
b2j := map[string][]int{}
for i, s := range m.b {
indices := b2j[s]
indices = append(indices, i)
b2j[s] = indices
}
// Purge junk elements
m.bJunk = map[string]struct{}{}
if m.IsJunk != nil {
junk := m.bJunk
for s, _ := range b2j {
if m.IsJunk(s) {
junk[s] = struct{}{}
}
}
for s, _ := range junk {
delete(b2j, s)
}
}
// Purge remaining popular elements
popular := map[string]struct{}{}
n := len(m.b)
if m.autoJunk && n >= 200 {
ntest := n/100 + 1
for s, indices := range b2j {
if len(indices) > ntest {
popular[s] = struct{}{}
}
}
for s, _ := range popular {
delete(b2j, s)
}
}
m.bPopular = popular
m.b2j = b2j
}
func (m *SequenceMatcher) isBJunk(s string) bool {
_, ok := m.bJunk[s]
return ok
}
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
//
// If IsJunk is not defined:
//
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
// alo <= i <= i+k <= ahi
// blo <= j <= j+k <= bhi
// and for all (i',j',k') meeting those conditions,
// k >= k'
// i <= i'
// and if i == i', j <= j'
//
// In other words, of all maximal matching blocks, return one that
// starts earliest in a, and of all those maximal matching blocks that
// start earliest in a, return the one that starts earliest in b.
//
// If IsJunk is defined, first the longest matching block is
// determined as above, but with the additional restriction that no
// junk element appears in the block. Then that block is extended as
// far as possible by matching (only) junk elements on both sides. So
// the resulting block never matches on junk except as identical junk
// happens to be adjacent to an "interesting" match.
//
// If no blocks match, return (alo, blo, 0).
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
// CAUTION: stripping common prefix or suffix would be incorrect.
// E.g.,
// ab
// acab
// Longest matching block is "ab", but if common prefix is
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
// strip, so ends up claiming that ab is changed to acab by
// inserting "ca" in the middle. That's minimal but unintuitive:
// "it's obvious" that someone inserted "ac" at the front.
// Windiff ends up at the same place as diff, but by pairing up
// the unique 'b's and then matching the first two 'a's.
besti, bestj, bestsize := alo, blo, 0
// find longest junk-free match
// during an iteration of the loop, j2len[j] = length of longest
// junk-free match ending with a[i-1] and b[j]
j2len := map[int]int{}
for i := alo; i != ahi; i++ {
// look at all instances of a[i] in b; note that because
// b2j has no junk keys, the loop is skipped if a[i] is junk
newj2len := map[int]int{}
for _, j := range m.b2j[m.a[i]] {
// a[i] matches b[j]
if j < blo {
continue
}
if j >= bhi {
break
}
k := j2len[j-1] + 1
newj2len[j] = k
if k > bestsize {
besti, bestj, bestsize = i-k+1, j-k+1, k
}
}
j2len = newj2len
}
// Extend the best by non-junk elements on each end. In particular,
// "popular" non-junk elements aren't in b2j, which greatly speeds
// the inner loop above, but also means "the best" match so far
// doesn't contain any junk *or* popular non-junk elements.
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
!m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
// Now that we have a wholly interesting match (albeit possibly
// empty!), we may as well suck up the matching junk on each
// side of it too. Can't think of a good reason not to, and it
// saves post-processing the (possibly considerable) expense of
// figuring out what to do with it. In the case of an empty
// interesting match, this is clearly the right thing to do,
// because no other kind of match is possible in the regions.
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
return Match{A: besti, B: bestj, Size: bestsize}
}
// Return list of triples describing matching subsequences.
//
// Each triple is of the form (i, j, n), and means that
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
// adjacent triples in the list, and the second is not the last triple in the
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
// adjacent equal blocks.
//
// The last triple is a dummy, (len(a), len(b), 0), and is the only
// triple with n==0.
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
if m.matchingBlocks != nil {
return m.matchingBlocks
}
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
match := m.findLongestMatch(alo, ahi, blo, bhi)
i, j, k := match.A, match.B, match.Size
if match.Size > 0 {
if alo < i && blo < j {
matched = matchBlocks(alo, i, blo, j, matched)
}
matched = append(matched, match)
if i+k < ahi && j+k < bhi {
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
}
}
return matched
}
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
// It's possible that we have adjacent equal blocks in the
// matching_blocks list now.
nonAdjacent := []Match{}
i1, j1, k1 := 0, 0, 0
for _, b := range matched {
// Is this block adjacent to i1, j1, k1?
i2, j2, k2 := b.A, b.B, b.Size
if i1+k1 == i2 && j1+k1 == j2 {
// Yes, so collapse them -- this just increases the length of
// the first block by the length of the second, and the first
// block so lengthened remains the block to compare against.
k1 += k2
} else {
// Not adjacent. Remember the first block (k1==0 means it's
// the dummy we started with), and make the second block the
// new block to compare against.
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
i1, j1, k1 = i2, j2, k2
}
}
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
m.matchingBlocks = nonAdjacent
return m.matchingBlocks
}
// Return list of 5-tuples describing how to turn a into b.
//
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
// tuple preceding it, and likewise for j1 == the previous j2.
//
// The tags are characters, with these meanings:
//
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
//
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
//
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
//
// 'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) GetOpCodes() []OpCode {
if m.opCodes != nil {
return m.opCodes
}
i, j := 0, 0
matching := m.GetMatchingBlocks()
opCodes := make([]OpCode, 0, len(matching))
for _, m := range matching {
// invariant: we've pumped out correct diffs to change
// a[:i] into b[:j], and the next matching block is
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
// out a diff to change a[i:ai] into b[j:bj], pump out
// the matching block, and move (i,j) beyond the match
ai, bj, size := m.A, m.B, m.Size
tag := byte(0)
if i < ai && j < bj {
tag = 'r'
} else if i < ai {
tag = 'd'
} else if j < bj {
tag = 'i'
}
if tag > 0 {
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
}
i, j = ai+size, bj+size
// the list of matching blocks is terminated by a
// sentinel with size 0
if size > 0 {
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
}
}
m.opCodes = opCodes
return m.opCodes
}
// Isolate change clusters by eliminating ranges with no changes.
//
// Return a generator of groups with up to n lines of context.
// Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
if n < 0 {
n = 3
}
codes := m.GetOpCodes()
if len(codes) == 0 {
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
}
// Fixup leading and trailing groups if they show no changes.
if codes[0].Tag == 'e' {
c := codes[0]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
}
if codes[len(codes)-1].Tag == 'e' {
c := codes[len(codes)-1]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
}
nn := n + n
groups := [][]OpCode{}
group := []OpCode{}
for _, c := range codes {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
// End the current group and start a new one whenever
// there is a large range with no changes.
if c.Tag == 'e' && i2-i1 > nn {
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
j1, min(j2, j1+n)})
groups = append(groups, group)
group = []OpCode{}
i1, j1 = max(i1, i2-n), max(j1, j2-n)
}
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
}
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
groups = append(groups, group)
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound
if m.fullBCount == nil {
m.fullBCount = map[string]int{}
for _, s := range m.b {
m.fullBCount[s] = m.fullBCount[s] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[string]int{}
matches := 0
for _, s := range m.a {
n, ok := avail[s]
if !ok {
n = m.fullBCount[s]
}
avail[s] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
// Unified diff parameters
type UnifiedDiff struct {
A []string // First sequence lines
FromFile string // First file name
FromDate string // First file time
B []string // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol string // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
wf := func(format string, args ...interface{}) error {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
return err
}
ws := func(s string) error {
_, err := buf.WriteString(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(" " + line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws("-" + line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws("+" + line); err != nil {
return err
}
}
}
}
}
return nil
}
// Like WriteUnifiedDiff but returns the diff a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return string(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return fmt.Sprintf("%d", beginning)
}
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s string) {
_, err := buf.WriteString(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
prefix := map[byte]string{
'i': "+ ",
'd': "- ",
'r': "! ",
'e': " ",
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
}
first, last := g[0], g[len(g)-1]
ws("***************" + diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a string.
func GetContextDiffString(diff ContextDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return string(w.Bytes()), err
}
// Split a string on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s string) []string {
lines := strings.SplitAfter(s, "\n")
lines[len(lines)-1] += "\n"
return lines
}

View file

@ -409,13 +409,11 @@ func (c *Conn) resendZkAuth(reauthReadyChan chan struct{}) {
defer close(reauthReadyChan)
if c.logInfo {
c.logger.Printf("Re-submitting `%d` credentials after reconnect",
len(c.creds))
c.logger.Printf("re-submitting `%d` credentials after reconnect", len(c.creds))
}
for _, cred := range c.creds {
if shouldCancel() {
c.logger.Printf("Cancel rer-submitting credentials")
return
}
resChan, err := c.sendRequest(
@ -428,7 +426,7 @@ func (c *Conn) resendZkAuth(reauthReadyChan chan struct{}) {
nil)
if err != nil {
c.logger.Printf("Call to sendRequest failed during credential resubmit: %s", err)
c.logger.Printf("call to sendRequest failed during credential resubmit: %s", err)
// FIXME(prozlach): lets ignore errors for now
continue
}
@ -437,14 +435,14 @@ func (c *Conn) resendZkAuth(reauthReadyChan chan struct{}) {
select {
case res = <-resChan:
case <-c.closeChan:
c.logger.Printf("Recv closed, cancel re-submitting credentials")
c.logger.Printf("recv closed, cancel re-submitting credentials")
return
case <-c.shouldQuit:
c.logger.Printf("Should quit, cancel re-submitting credentials")
c.logger.Printf("should quit, cancel re-submitting credentials")
return
}
if res.err != nil {
c.logger.Printf("Credential re-submit failed: %s", res.err)
c.logger.Printf("credential re-submit failed: %s", res.err)
// FIXME(prozlach): lets ignore errors for now
continue
}
@ -486,14 +484,14 @@ func (c *Conn) loop() {
err := c.authenticate()
switch {
case err == ErrSessionExpired:
c.logger.Printf("Authentication failed: %s", err)
c.logger.Printf("authentication failed: %s", err)
c.invalidateWatches(err)
case err != nil && c.conn != nil:
c.logger.Printf("Authentication failed: %s", err)
c.logger.Printf("authentication failed: %s", err)
c.conn.Close()
case err == nil:
if c.logInfo {
c.logger.Printf("Authenticated: id=%d, timeout=%d", c.SessionID(), c.sessionTimeoutMs)
c.logger.Printf("authenticated: id=%d, timeout=%d", c.SessionID(), c.sessionTimeoutMs)
}
c.hostProvider.Connected() // mark success
c.closeChan = make(chan struct{}) // channel to tell send loop stop
@ -508,7 +506,7 @@ func (c *Conn) loop() {
}
err := c.sendLoop()
if err != nil || c.logInfo {
c.logger.Printf("Send loop terminated: err=%v", err)
c.logger.Printf("send loop terminated: err=%v", err)
}
c.conn.Close() // causes recv loop to EOF/exit
wg.Done()
@ -523,7 +521,7 @@ func (c *Conn) loop() {
err = c.recvLoop(c.conn)
}
if err != io.EOF || c.logInfo {
c.logger.Printf("Recv loop terminated: err=%v", err)
c.logger.Printf("recv loop terminated: err=%v", err)
}
if err == nil {
panic("zk: recvLoop should never return nil error")
@ -697,20 +695,28 @@ func (c *Conn) authenticate() error {
binary.BigEndian.PutUint32(buf[:4], uint32(n))
c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout * 10))
if err := c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout * 10)); err != nil {
return err
}
_, err = c.conn.Write(buf[:n+4])
c.conn.SetWriteDeadline(time.Time{})
if err != nil {
return err
}
if err := c.conn.SetWriteDeadline(time.Time{}); err != nil {
return err
}
// Receive and decode a connect response.
c.conn.SetReadDeadline(time.Now().Add(c.recvTimeout * 10))
if err := c.conn.SetReadDeadline(time.Now().Add(c.recvTimeout * 10)); err != nil {
return err
}
_, err = io.ReadFull(c.conn, buf[:4])
c.conn.SetReadDeadline(time.Time{})
if err != nil {
return err
}
if err := c.conn.SetReadDeadline(time.Time{}); err != nil {
return err
}
blen := int(binary.BigEndian.Uint32(buf[:4]))
if cap(buf) < blen {
@ -772,14 +778,18 @@ func (c *Conn) sendData(req *request) error {
c.requests[req.xid] = req
c.requestsLock.Unlock()
c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout))
if err := c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout)); err != nil {
return err
}
_, err = c.conn.Write(c.buf[:n+4])
c.conn.SetWriteDeadline(time.Time{})
if err != nil {
req.recvChan <- response{-1, err}
c.conn.Close()
return err
}
if err := c.conn.SetWriteDeadline(time.Time{}); err != nil {
return err
}
return nil
}
@ -802,13 +812,17 @@ func (c *Conn) sendLoop() error {
binary.BigEndian.PutUint32(c.buf[:4], uint32(n))
c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout))
if err := c.conn.SetWriteDeadline(time.Now().Add(c.recvTimeout)); err != nil {
return err
}
_, err = c.conn.Write(c.buf[:n+4])
c.conn.SetWriteDeadline(time.Time{})
if err != nil {
c.conn.Close()
return err
}
if err := c.conn.SetWriteDeadline(time.Time{}); err != nil {
return err
}
case <-c.closeChan:
return nil
}
@ -823,10 +837,12 @@ func (c *Conn) recvLoop(conn net.Conn) error {
buf := make([]byte, sz)
for {
// package length
conn.SetReadDeadline(time.Now().Add(c.recvTimeout))
if err := conn.SetReadDeadline(time.Now().Add(c.recvTimeout)); err != nil {
c.logger.Printf("failed to set connection deadline: %v", err)
}
_, err := io.ReadFull(conn, buf[:4])
if err != nil {
return err
return fmt.Errorf("failed to read from connection: %v", err)
}
blen := int(binary.BigEndian.Uint32(buf[:4]))
@ -838,10 +854,12 @@ func (c *Conn) recvLoop(conn net.Conn) error {
}
_, err = io.ReadFull(conn, buf[:blen])
conn.SetReadDeadline(time.Time{})
if err != nil {
return err
}
if err := conn.SetReadDeadline(time.Time{}); err != nil {
return err
}
res := responseHeader{}
_, err = decodePacket(buf[:16], &res)
@ -874,7 +892,7 @@ func (c *Conn) recvLoop(conn net.Conn) error {
c.watchersLock.Lock()
for _, t := range wTypes {
wpt := watchPathType{res.Path, t}
if watchers := c.watchers[wpt]; watchers != nil && len(watchers) > 0 {
if watchers, ok := c.watchers[wpt]; ok {
for _, ch := range watchers {
ch <- ev
close(ch)
@ -1220,6 +1238,38 @@ func (c *Conn) Multi(ops ...interface{}) ([]MultiResponse, error) {
return mr, err
}
// IncrementalReconfig is the zookeeper reconfiguration api that allows adding and removing servers
// by lists of members.
// Return the new configuration stats.
func (c *Conn) IncrementalReconfig(joining, leaving []string, version int64) (*Stat, error) {
// TODO: validate the shape of the member string to give early feedback.
request := &reconfigRequest{
JoiningServers: []byte(strings.Join(joining, ",")),
LeavingServers: []byte(strings.Join(leaving, ",")),
CurConfigId: version,
}
return c.internalReconfig(request)
}
// Reconfig is the non-incremental update functionality for Zookeeper where the list preovided
// is the entire new member list.
// the optional version allows for conditional reconfigurations, -1 ignores the condition.
func (c *Conn) Reconfig(members []string, version int64) (*Stat, error) {
request := &reconfigRequest{
NewMembers: []byte(strings.Join(members, ",")),
CurConfigId: version,
}
return c.internalReconfig(request)
}
func (c *Conn) internalReconfig(request *reconfigRequest) (*Stat, error) {
response := &reconfigReponse{}
_, err := c.request(opReconfig, request, response, nil)
return &response.Stat, err
}
// Server returns the current or last-connected server name.
func (c *Conn) Server() string {
c.serverMu.Lock()

View file

@ -2,6 +2,7 @@ package zk
import (
"errors"
"fmt"
)
const (
@ -25,6 +26,7 @@ const (
opGetChildren2 = 12
opCheck = 13
opMulti = 14
opReconfig = 16
opClose = -11
opSetAuth = 100
opSetWatches = 101
@ -92,7 +94,7 @@ func (s State) String() string {
if name := stateNames[s]; name != "" {
return name
}
return "Unknown"
return "unknown state"
}
type ErrCode int32
@ -113,8 +115,10 @@ var (
ErrClosing = errors.New("zk: zookeeper is closing")
ErrNothing = errors.New("zk: no server responsees to process")
ErrSessionMoved = errors.New("zk: session moved to another server, so operation is ignored")
ErrReconfigDisabled = errors.New("attempts to perform a reconfiguration operation when reconfiguration feature is disabled")
ErrBadArguments = errors.New("invalid arguments")
// ErrInvalidCallback = errors.New("zk: invalid callback specified")
errCodeToError = map[ErrCode]error{
0: nil,
errAPIError: ErrAPIError,
@ -126,11 +130,13 @@ var (
errNotEmpty: ErrNotEmpty,
errSessionExpired: ErrSessionExpired,
// errInvalidCallback: ErrInvalidCallback,
errInvalidAcl: ErrInvalidACL,
errAuthFailed: ErrAuthFailed,
errClosing: ErrClosing,
errNothing: ErrNothing,
errSessionMoved: ErrSessionMoved,
errInvalidAcl: ErrInvalidACL,
errAuthFailed: ErrAuthFailed,
errClosing: ErrClosing,
errNothing: ErrNothing,
errSessionMoved: ErrSessionMoved,
errZReconfigDisabled: ErrReconfigDisabled,
errBadArguments: ErrBadArguments,
}
)
@ -138,7 +144,7 @@ func (e ErrCode) toError() error {
if err, ok := errCodeToError[e]; ok {
return err
}
return ErrUnknown
return fmt.Errorf("unknown error: %v", e)
}
const (
@ -168,6 +174,8 @@ const (
errClosing ErrCode = -116
errNothing ErrCode = -117
errSessionMoved ErrCode = -118
// Attempts to perform a reconfiguration operation when reconfiguration feature is disabled
errZReconfigDisabled ErrCode = -123
)
// Constants for ACL permissions
@ -197,6 +205,7 @@ var (
opGetChildren2: "getChildren2",
opCheck: "check",
opMulti: "multi",
opReconfig: "reconfig",
opClose: "close",
opSetAuth: "setAuth",
opSetWatches: "setWatches",

View file

@ -255,12 +255,16 @@ func fourLetterWord(server, command string, timeout time.Duration) ([]byte, erro
// once the command has been processed, but better safe than sorry
defer conn.Close()
conn.SetWriteDeadline(time.Now().Add(timeout))
if err := conn.SetWriteDeadline(time.Now().Add(timeout)); err != nil {
return nil, err
}
_, err = conn.Write([]byte(command))
if err != nil {
return nil, err
}
conn.SetReadDeadline(time.Now().Add(timeout))
if err := conn.SetReadDeadline(time.Now().Add(timeout)); err != nil {
return nil, err
}
return ioutil.ReadAll(conn)
}

View file

@ -1,216 +0,0 @@
package zk
import (
"fmt"
"io"
"io/ioutil"
"math/rand"
"os"
"path/filepath"
"strings"
"time"
)
func init() {
rand.Seed(time.Now().UnixNano())
}
type TestServer struct {
Port int
Path string
Srv *Server
}
type TestCluster struct {
Path string
Servers []TestServer
}
func StartTestCluster(size int, stdout, stderr io.Writer) (*TestCluster, error) {
tmpPath, err := ioutil.TempDir("", "gozk")
if err != nil {
return nil, err
}
success := false
startPort := int(rand.Int31n(6000) + 10000)
cluster := &TestCluster{Path: tmpPath}
defer func() {
if !success {
cluster.Stop()
}
}()
for serverN := 0; serverN < size; serverN++ {
srvPath := filepath.Join(tmpPath, fmt.Sprintf("srv%d", serverN))
if err := os.Mkdir(srvPath, 0700); err != nil {
return nil, err
}
port := startPort + serverN*3
cfg := ServerConfig{
ClientPort: port,
DataDir: srvPath,
}
for i := 0; i < size; i++ {
cfg.Servers = append(cfg.Servers, ServerConfigServer{
ID: i + 1,
Host: "127.0.0.1",
PeerPort: startPort + i*3 + 1,
LeaderElectionPort: startPort + i*3 + 2,
})
}
cfgPath := filepath.Join(srvPath, "zoo.cfg")
fi, err := os.Create(cfgPath)
if err != nil {
return nil, err
}
err = cfg.Marshall(fi)
fi.Close()
if err != nil {
return nil, err
}
fi, err = os.Create(filepath.Join(srvPath, "myid"))
if err != nil {
return nil, err
}
_, err = fmt.Fprintf(fi, "%d\n", serverN+1)
fi.Close()
if err != nil {
return nil, err
}
srv := &Server{
ConfigPath: cfgPath,
Stdout: stdout,
Stderr: stderr,
}
if err := srv.Start(); err != nil {
return nil, err
}
cluster.Servers = append(cluster.Servers, TestServer{
Path: srvPath,
Port: cfg.ClientPort,
Srv: srv,
})
}
if err := cluster.waitForStart(10, time.Second); err != nil {
return nil, err
}
success = true
return cluster, nil
}
func (tc *TestCluster) Connect(idx int) (*Conn, error) {
zk, _, err := Connect([]string{fmt.Sprintf("127.0.0.1:%d", tc.Servers[idx].Port)}, time.Second*15)
return zk, err
}
func (tc *TestCluster) ConnectAll() (*Conn, <-chan Event, error) {
return tc.ConnectAllTimeout(time.Second * 15)
}
func (tc *TestCluster) ConnectAllTimeout(sessionTimeout time.Duration) (*Conn, <-chan Event, error) {
return tc.ConnectWithOptions(sessionTimeout)
}
func (tc *TestCluster) ConnectWithOptions(sessionTimeout time.Duration, options ...connOption) (*Conn, <-chan Event, error) {
hosts := make([]string, len(tc.Servers))
for i, srv := range tc.Servers {
hosts[i] = fmt.Sprintf("127.0.0.1:%d", srv.Port)
}
zk, ch, err := Connect(hosts, sessionTimeout, options...)
return zk, ch, err
}
func (tc *TestCluster) Stop() error {
for _, srv := range tc.Servers {
srv.Srv.Stop()
}
defer os.RemoveAll(tc.Path)
return tc.waitForStop(5, time.Second)
}
// waitForStart blocks until the cluster is up
func (tc *TestCluster) waitForStart(maxRetry int, interval time.Duration) error {
// verify that the servers are up with SRVR
serverAddrs := make([]string, len(tc.Servers))
for i, s := range tc.Servers {
serverAddrs[i] = fmt.Sprintf("127.0.0.1:%d", s.Port)
}
for i := 0; i < maxRetry; i++ {
_, ok := FLWSrvr(serverAddrs, time.Second)
if ok {
return nil
}
time.Sleep(interval)
}
return fmt.Errorf("unable to verify health of servers")
}
// waitForStop blocks until the cluster is down
func (tc *TestCluster) waitForStop(maxRetry int, interval time.Duration) error {
// verify that the servers are up with RUOK
serverAddrs := make([]string, len(tc.Servers))
for i, s := range tc.Servers {
serverAddrs[i] = fmt.Sprintf("127.0.0.1:%d", s.Port)
}
var success bool
for i := 0; i < maxRetry && !success; i++ {
success = true
for _, ok := range FLWRuok(serverAddrs, time.Second) {
if ok {
success = false
}
}
if !success {
time.Sleep(interval)
}
}
if !success {
return fmt.Errorf("unable to verify servers are down")
}
return nil
}
func (tc *TestCluster) StartServer(server string) {
for _, s := range tc.Servers {
if strings.HasSuffix(server, fmt.Sprintf(":%d", s.Port)) {
s.Srv.Start()
return
}
}
panic(fmt.Sprintf("Unknown server: %s", server))
}
func (tc *TestCluster) StopServer(server string) {
for _, s := range tc.Servers {
if strings.HasSuffix(server, fmt.Sprintf(":%d", s.Port)) {
s.Srv.Stop()
return
}
}
panic(fmt.Sprintf("Unknown server: %s", server))
}
func (tc *TestCluster) StartAllServers() error {
for _, s := range tc.Servers {
if err := s.Srv.Start(); err != nil {
return fmt.Errorf(
"Failed to start server listening on port `%d` : %+v", s.Port, err)
}
}
return nil
}
func (tc *TestCluster) StopAllServers() error {
for _, s := range tc.Servers {
if err := s.Srv.Stop(); err != nil {
return fmt.Errorf(
"Failed to stop server listening on port `%d` : %+v", s.Port, err)
}
}
return nil
}

View file

@ -1,136 +0,0 @@
package zk
import (
"fmt"
"io"
"os"
"os/exec"
"path/filepath"
)
type ErrMissingServerConfigField string
func (e ErrMissingServerConfigField) Error() string {
return fmt.Sprintf("zk: missing server config field '%s'", string(e))
}
const (
DefaultServerTickTime = 2000
DefaultServerInitLimit = 10
DefaultServerSyncLimit = 5
DefaultServerAutoPurgeSnapRetainCount = 3
DefaultPeerPort = 2888
DefaultLeaderElectionPort = 3888
)
type ServerConfigServer struct {
ID int
Host string
PeerPort int
LeaderElectionPort int
}
type ServerConfig struct {
TickTime int // Number of milliseconds of each tick
InitLimit int // Number of ticks that the initial synchronization phase can take
SyncLimit int // Number of ticks that can pass between sending a request and getting an acknowledgement
DataDir string // Direcrory where the snapshot is stored
ClientPort int // Port at which clients will connect
AutoPurgeSnapRetainCount int // Number of snapshots to retain in dataDir
AutoPurgePurgeInterval int // Purge task internal in hours (0 to disable auto purge)
Servers []ServerConfigServer
}
func (sc ServerConfig) Marshall(w io.Writer) error {
if sc.DataDir == "" {
return ErrMissingServerConfigField("dataDir")
}
fmt.Fprintf(w, "dataDir=%s\n", sc.DataDir)
if sc.TickTime <= 0 {
sc.TickTime = DefaultServerTickTime
}
fmt.Fprintf(w, "tickTime=%d\n", sc.TickTime)
if sc.InitLimit <= 0 {
sc.InitLimit = DefaultServerInitLimit
}
fmt.Fprintf(w, "initLimit=%d\n", sc.InitLimit)
if sc.SyncLimit <= 0 {
sc.SyncLimit = DefaultServerSyncLimit
}
fmt.Fprintf(w, "syncLimit=%d\n", sc.SyncLimit)
if sc.ClientPort <= 0 {
sc.ClientPort = DefaultPort
}
fmt.Fprintf(w, "clientPort=%d\n", sc.ClientPort)
if sc.AutoPurgePurgeInterval > 0 {
if sc.AutoPurgeSnapRetainCount <= 0 {
sc.AutoPurgeSnapRetainCount = DefaultServerAutoPurgeSnapRetainCount
}
fmt.Fprintf(w, "autopurge.snapRetainCount=%d\n", sc.AutoPurgeSnapRetainCount)
fmt.Fprintf(w, "autopurge.purgeInterval=%d\n", sc.AutoPurgePurgeInterval)
}
if len(sc.Servers) > 0 {
for _, srv := range sc.Servers {
if srv.PeerPort <= 0 {
srv.PeerPort = DefaultPeerPort
}
if srv.LeaderElectionPort <= 0 {
srv.LeaderElectionPort = DefaultLeaderElectionPort
}
fmt.Fprintf(w, "server.%d=%s:%d:%d\n", srv.ID, srv.Host, srv.PeerPort, srv.LeaderElectionPort)
}
}
return nil
}
var jarSearchPaths = []string{
"zookeeper-*/contrib/fatjar/zookeeper-*-fatjar.jar",
"../zookeeper-*/contrib/fatjar/zookeeper-*-fatjar.jar",
"/usr/share/java/zookeeper-*.jar",
"/usr/local/zookeeper-*/contrib/fatjar/zookeeper-*-fatjar.jar",
"/usr/local/Cellar/zookeeper/*/libexec/contrib/fatjar/zookeeper-*-fatjar.jar",
}
func findZookeeperFatJar() string {
var paths []string
zkPath := os.Getenv("ZOOKEEPER_PATH")
if zkPath == "" {
paths = jarSearchPaths
} else {
paths = []string{filepath.Join(zkPath, "contrib/fatjar/zookeeper-*-fatjar.jar")}
}
for _, path := range paths {
matches, _ := filepath.Glob(path)
// TODO: could sort by version and pick latest
if len(matches) > 0 {
return matches[0]
}
}
return ""
}
type Server struct {
JarPath string
ConfigPath string
Stdout, Stderr io.Writer
cmd *exec.Cmd
}
func (srv *Server) Start() error {
if srv.JarPath == "" {
srv.JarPath = findZookeeperFatJar()
if srv.JarPath == "" {
return fmt.Errorf("zk: unable to find server jar")
}
}
srv.cmd = exec.Command("java", "-jar", srv.JarPath, "server", srv.ConfigPath)
srv.cmd.Stdout = srv.Stdout
srv.cmd.Stderr = srv.Stderr
return srv.cmd.Start()
}
func (srv *Server) Stop() error {
srv.cmd.Process.Signal(os.Kill)
return srv.cmd.Wait()
}

View file

@ -6,6 +6,7 @@ import (
"log"
"reflect"
"runtime"
"strings"
"time"
)
@ -277,6 +278,18 @@ type multiResponse struct {
DoneHeader multiHeader
}
// zk version 3.5 reconfig API
type reconfigRequest struct {
JoiningServers []byte
LeavingServers []byte
NewMembers []byte
// curConfigId version of the current configuration
// optional - causes reconfiguration to return an error if configuration is no longer current
CurConfigId int64
}
type reconfigReponse getDataResponse
func (r *multiRequest) Encode(buf []byte) (int, error) {
total := 0
for _, op := range r.Ops {
@ -392,7 +405,7 @@ type encoder interface {
func decodePacket(buf []byte, st interface{}) (n int, err error) {
defer func() {
if r := recover(); r != nil {
if e, ok := r.(runtime.Error); ok && e.Error() == "runtime error: slice bounds out of range" {
if e, ok := r.(runtime.Error); ok && strings.HasPrefix(e.Error(), "runtime error: slice bounds out of range") {
err = ErrShortBuffer
} else {
panic(r)
@ -483,7 +496,7 @@ func decodePacketValue(buf []byte, v reflect.Value) (int, error) {
func encodePacket(buf []byte, st interface{}) (n int, err error) {
defer func() {
if r := recover(); r != nil {
if e, ok := r.(runtime.Error); ok && e.Error() == "runtime error: slice bounds out of range" {
if e, ok := r.(runtime.Error); ok && strings.HasPrefix(e.Error(), "runtime error: slice bounds out of range") {
err = ErrShortBuffer
} else {
panic(r)
@ -604,6 +617,8 @@ func requestStructForOp(op int32) interface{} {
return &CheckVersionRequest{}
case opMulti:
return &multiRequest{}
case opReconfig:
return &reconfigRequest{}
}
return nil
}

View file

@ -1,8 +1,6 @@
objx - by Mat Ryer and Tyler Bunnell
MIT License
The MIT License (MIT)
Copyright (c) 2014 Stretchr, Inc.
Copyright (c) 2012-2018 Mat Ryer and Tyler Bunnell
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

Some files were not shown because too many files have changed in this diff Show more