Added a task utility to be able to cluster tasks into N clusters based on their watts resource requirements. Electron now compatible with Go1.8 and no longer with 1.7. Added TODOs.

This commit is contained in:
Pradyumna Kaushik 2017-02-25 15:43:32 -05:00
parent 9dddc38cad
commit e54697b0dc
2 changed files with 58 additions and 63 deletions

View file

@ -18,6 +18,9 @@ To Do:
* Make def.Task an interface for further modularization and flexibility.
* Convert def#WattsToConsider(...) to be a receiver of def.Task and change the name of it to Watts(...).
* Have a generic sorter for task resources instead of having one for each kind of resource.
* **Critical** -- Add software requirements to the README.md (Mesos version, RAPL version, PCP version, Go version...)
* Retrofit to use Go 1.8 sorting techniques. Use def/taskUtils.go for reference.
* Retrofit TopHeavy and BottomHeavy schedulers to use the clustering utility for tasks.
**Requires [Performance Co-Pilot](http://pcp.io/) tool pmdumptext to be installed on the
machine on which electron is launched for logging to work and PCP collector agents installed

View file

@ -5,6 +5,34 @@ import (
"sort"
)
// Information about a cluster of tasks
type TaskCluster struct {
ClusterIndex int
Tasks []Task
SizeScore int // How many other clusters is this cluster bigger than
}
// Classification of Tasks using KMeans clustering using the watts consumption observations
type TasksToClassify []Task
func (tc TasksToClassify) ClassifyTasks(numberOfClusters int) []TaskCluster {
clusters := make(map[int][]Task)
observations := getObservations(tc)
// TODO: Make the number of rounds configurable based on the size of the workload
if trained, centroids := gokmeans.Train(observations, numberOfClusters, 100); trained {
for i := 0; i < len(observations); i++ {
observation := observations[i]
classIndex := gokmeans.Nearest(observation, centroids)
if _, ok := clusters[classIndex]; ok {
clusters[classIndex] = append(clusters[classIndex], tc[i])
} else {
clusters[classIndex] = []Task{tc[i]}
}
}
}
return labelAndOrder(clusters, numberOfClusters)
}
// The watts consumption observations are taken into consideration.
func getObservations(tasks []Task) []gokmeans.Node {
observations := []gokmeans.Node{}
@ -25,6 +53,8 @@ func getObservations(tasks []Task) []gokmeans.Node {
return observations
}
// Size tasks based on the power consumption
// TODO: Size the cluster in a better way just taking an aggregate of the watts resource requirement.
func clusterSize(tasks []Task) float64 {
size := 0.0
for _, task := range tasks {
@ -39,76 +69,38 @@ func clusterSize(tasks []Task) float64 {
return size
}
// information about a cluster of tasks
type TaskCluster struct {
clusterIndex int
tasks []Task
sizeScore int // how many other clusters is this one bigger than (in the current workload)
}
// Order clusters in increasing order of task heaviness
func labelAndOrder(clusters map[int][]Task, numberOfClusters int) []TaskCluster {
// Determine the position of the cluster in the ordered list of clusters
sizedClusters := []TaskCluster{}
// Sorting TaskClusters based on sizeScore
type TaskClusterSorter []TaskCluster
func (slice TaskClusterSorter) Len() int {
return len(slice)
}
func (slice TaskClusterSorter) Less(i, j int) bool {
return slice[i].sizeScore <= slice[j].sizeScore
}
func (slice TaskClusterSorter) Swap(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
}
// order clusters in increasing order of task heaviness
// TODO: Make this look into task.ClassToWatts, if present.
func order(clusters map[int][]Task, numberOfClusters int) []TaskCluster {
// determine the position of the cluster in the ordered list of clusters
clusterSizeScores := []TaskCluster{}
// Initializing
for i := 0; i < numberOfClusters; i++ {
// sizing the current cluster
sizedClusters = append(sizedClusters, TaskCluster{
ClusterIndex: i,
Tasks: clusters[i],
SizeScore: 0,
})
}
for i := 0; i < numberOfClusters-1; i++ {
// Sizing the current cluster
sizeI := clusterSize(clusters[i])
// comparing with the other clusters
for j := 0; j != i; j++ {
if sizeI >= clusterSize(clusters[j]) {
if len(clusterSizeScores) >= i {
clusterSizeScores[i].sizeScore++
} else {
clusterSizeScores[i] = TaskCluster{
clusterIndex: i,
tasks: clusters[i],
sizeScore: 1,
}
}
// Comparing with the other clusters
for j := i + 1; j < numberOfClusters; j++ {
sizeJ := clusterSize(clusters[j])
if sizeI > sizeJ {
sizedClusters[i].SizeScore++
} else {
sizedClusters[j].SizeScore++
}
}
}
// Sorting the clusters based on sizeScore
sort.Sort(TaskClusterSorter(clusterSizeScores))
return clusterSizeScores
}
// Classification of Tasks using KMeans clustering using the watts consumption observations
type TasksToClassify []Task
func (tc TasksToClassify) ClassifyTasks(numberOfClusters int) []TaskCluster {
clusters := make(map[int][]Task)
observations := getObservations(tc)
// TODO: Make the number of rounds configurable based on the size of the workload
if trained, centroids := gokmeans.Train(observations, numberOfClusters, 50); trained {
for i := 0; i < len(observations); i++ {
observation := observations[i]
classIndex := gokmeans.Nearest(observation, centroids)
if _, ok := clusters[classIndex]; ok {
clusters[classIndex] = append(clusters[classIndex], tc[i])
} else {
clusters[classIndex] = []Task{tc[i]}
}
}
}
return order(clusters, numberOfClusters)
sort.SliceStable(sizedClusters, func(i, j int) bool {
return sizedClusters[i].SizeScore <= sizedClusters[j].SizeScore
})
return sizedClusters
}