// Copyright (C) 2018 spdf // // This file is part of Elektron. // // Elektron is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Elektron is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Elektron. If not, see . // package powerCap import ( "bufio" "container/ring" "fmt" "log" "math" "os/exec" "sort" "strconv" "strings" "syscall" "time" "gitlab.com/spdf/elektron/constants" elekLogDef "gitlab.com/spdf/elektron/logging/def" "gitlab.com/spdf/elektron/pcp" "gitlab.com/spdf/elektron/rapl" "gitlab.com/spdf/elektron/utilities" ) func round(num float64) int { return int(math.Floor(num + math.Copysign(0.5, num))) } func getNextCapValue(curCapValue float64, precision int) float64 { curCapValue /= 2.0 output := math.Pow(10, float64(precision)) return float64(round(curCapValue*output)) / output } func StartPCPLogAndProgressiveExtremaCap(quit chan struct{}, logging *bool, hiThreshold, loThreshold float64, logMType chan elekLogDef.LogMessageType, logMsg chan string, pcpConfigFile string) { var pcpCommand string = "pmdumptext -m -l -f '' -t 1.0 -d , -c " + pcpConfigFile cmd := exec.Command("sh", "-c", pcpCommand, pcpConfigFile) cmd.SysProcAttr = &syscall.SysProcAttr{Setpgid: true} if hiThreshold < loThreshold { logMType <- elekLogDef.GENERAL logMsg <- "High threshold is lower than low threshold!" } pipe, err := cmd.StdoutPipe() if err != nil { log.Fatal(err) } //cmd.Stdout = stdout scanner := bufio.NewScanner(pipe) go func(logging *bool, hiThreshold, loThreshold float64) { // Get names of the columns. scanner.Scan() // Write to logfile logMType <- elekLogDef.PCP logMsg <- scanner.Text() headers := strings.Split(scanner.Text(), ",") powerIndexes := make([]int, 0, 0) powerHistories := make(map[string]*ring.Ring) indexToHost := make(map[int]string) for i, hostMetric := range headers { metricSplit := strings.Split(hostMetric, ":") if strings.Contains(metricSplit[1], "RAPL_ENERGY_PKG") || strings.Contains(metricSplit[1], "RAPL_ENERGY_DRAM") { powerIndexes = append(powerIndexes, i) indexToHost[i] = metricSplit[0] // Only create one ring per host. if _, ok := powerHistories[metricSplit[0]]; !ok { // Two PKGS, two DRAM per node, 20 = 5 seconds of tracking. powerHistories[metricSplit[0]] = ring.New(20) } } } // Throw away first set of results. scanner.Scan() // To keep track of the capped states of the capped victims. cappedVictims := make(map[string]float64) // TODO: Come with a better name for this. orderCapped := make([]string, 0, 8) // TODO: Change this to a priority queue ordered by the cap value. This will get rid of the sorting performed in the code. // Parallel data structure to orderCapped to keep track of the uncapped states of the uncapped victims. orderCappedVictims := make(map[string]float64) clusterPowerHist := ring.New(5) seconds := 0 for scanner.Scan() { if *logging { logMType <- elekLogDef.GENERAL logMsg <- "Logging PCP..." split := strings.Split(scanner.Text(), ",") text := scanner.Text() logMType <- elekLogDef.PCP logMsg <- text totalPower := 0.0 for _, powerIndex := range powerIndexes { power, _ := strconv.ParseFloat(split[powerIndex], 64) host := indexToHost[powerIndex] powerHistories[host].Value = power powerHistories[host] = powerHistories[host].Next() logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Host: %s, Power %f", indexToHost[powerIndex], (power * pcp.RAPLUnits)) totalPower += power } clusterPower := totalPower * pcp.RAPLUnits clusterPowerHist.Value = clusterPower clusterPowerHist = clusterPowerHist.Next() clusterMean := pcp.AverageClusterPowerHistory(clusterPowerHist) logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Total power: %f, %d Sec Avg: %f", clusterPower, clusterPowerHist.Len(), clusterMean) if clusterMean >= hiThreshold { logMType <- elekLogDef.GENERAL logMsg <- "Need to cap a node" logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Cap values of capped victims: %v", cappedVictims) logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Cap values of victims to uncap: %v", orderCappedVictims) // Create statics for all victims and choose one to cap victims := make([]pcp.Victim, 0, 8) // TODO: Just keep track of the largest to reduce fron nlogn to n for name, history := range powerHistories { histMean := pcp.AverageNodePowerHistory(history) // Consider doing mean calculations using go routines if we need to speed up. victims = append(victims, pcp.Victim{Watts: histMean, Host: name}) } sort.Sort(pcp.VictimSorter(victims)) // Sort by average wattage. // Finding the best victim to cap in a round robin manner. newVictimFound := false alreadyCappedHosts := []string{} // Host-names of victims that are already capped. for i := 0; i < len(victims); i++ { // Try to pick a victim that hasn't been capped yet. if _, ok := cappedVictims[victims[i].Host]; !ok { // If this victim can't be capped further, then we move on to find another victim. if _, ok := orderCappedVictims[victims[i].Host]; ok { continue } // Need to cap this victim. if err := rapl.Cap(victims[i].Host, "rapl", 50.0); err != nil { logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Error capping host %s", victims[i].Host) } else { logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Capped host[%s] at %f", victims[i].Host, 50.0) // Keeping track of this victim and it's cap value cappedVictims[victims[i].Host] = 50.0 newVictimFound = true // This node can be uncapped and hence adding to orderCapped. orderCapped = append(orderCapped, victims[i].Host) orderCappedVictims[victims[i].Host] = 50.0 break // Breaking only on successful cap. } } else { alreadyCappedHosts = append(alreadyCappedHosts, victims[i].Host) } } // If no new victim found, then we need to cap the best victim among the ones that are already capped. if !newVictimFound { canCapAlreadyCappedVictim := false for i := 0; i < len(alreadyCappedHosts); i++ { // If already capped then the host must be present in orderCappedVictims. capValue := orderCappedVictims[alreadyCappedHosts[i]] // If capValue is greater than the threshold then cap, else continue. if capValue > constants.LowerCapLimit { newCapValue := getNextCapValue(capValue, 2) if err := rapl.Cap(alreadyCappedHosts[i], "rapl", newCapValue); err != nil { logMType <- elekLogDef.ERROR logMsg <- fmt.Sprintf("Error capping host[%s]", alreadyCappedHosts[i]) } else { // Successful cap logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Capped host[%s] at %f", alreadyCappedHosts[i], newCapValue) // Checking whether this victim can be capped further if newCapValue <= constants.LowerCapLimit { // Deleting victim from cappedVictims. delete(cappedVictims, alreadyCappedHosts[i]) // Updating the cap value in orderCappedVictims. orderCappedVictims[alreadyCappedHosts[i]] = newCapValue } else { // Updating the cap value. cappedVictims[alreadyCappedHosts[i]] = newCapValue orderCappedVictims[alreadyCappedHosts[i]] = newCapValue } canCapAlreadyCappedVictim = true break // Breaking only on successful cap. } } else { // Do nothing. // Continue to find another victim to cap. // If cannot find any victim, then all nodes have been // capped to the maximum and we stop capping at this point. } } if !canCapAlreadyCappedVictim { logMType <- elekLogDef.GENERAL logMsg <- "No Victim left to cap." } } } else if clusterMean < loThreshold { logMType <- elekLogDef.GENERAL logMsg <- "Need to uncap a node" logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Cap values of capped victims: %v", cappedVictims) logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Cap values of victims to uncap: %v", orderCappedVictims) if len(orderCapped) > 0 { // We pick the host that is capped the most to uncap. orderCappedToSort := utilities.GetPairList(orderCappedVictims) sort.Sort(orderCappedToSort) // Sorted hosts in non-decreasing order of capped states. hostToUncap := orderCappedToSort[0].Key // Uncapping the host. // This is a floating point operation and might suffer from precision loss. newUncapValue := orderCappedVictims[hostToUncap] * 2.0 if err := rapl.Cap(hostToUncap, "rapl", newUncapValue); err != nil { logMType <- elekLogDef.ERROR logMsg <- fmt.Sprintf("Error uncapping host[%s]", hostToUncap) } else { // Successful uncap logMType <- elekLogDef.GENERAL logMsg <- fmt.Sprintf("Uncapped host[%s] to %f", hostToUncap, newUncapValue) // Can we uncap this host further. If not, then we remove its entry from orderCapped if newUncapValue >= 100.0 { // can compare using == // Deleting entry from orderCapped for i, victimHost := range orderCapped { if victimHost == hostToUncap { orderCapped = append(orderCapped[:i], orderCapped[i+1:]...) break // We are done removing host from orderCapped. } } // Removing entry for host from the parallel data structure. delete(orderCappedVictims, hostToUncap) // Removing entry from cappedVictims as this host is no longer capped. delete(cappedVictims, hostToUncap) } else if newUncapValue > constants.LowerCapLimit { // This check is unnecessary and can be converted to 'else'. // Updating the cap value. orderCappedVictims[hostToUncap] = newUncapValue cappedVictims[hostToUncap] = newUncapValue } } } else { logMType <- elekLogDef.GENERAL logMsg <- "No host staged for Uncapped" } } } seconds++ } }(logging, hiThreshold, loThreshold) logMType <- elekLogDef.GENERAL logMsg <- "PCP logging started" if err := cmd.Start(); err != nil { log.Fatal(err) } pgid, err := syscall.Getpgid(cmd.Process.Pid) select { case <-quit: logMType <- elekLogDef.GENERAL logMsg <- "Stopping PCP logging in 5 seconds" time.Sleep(5 * time.Second) // http://stackoverflow.com/questions/22470193/why-wont-go-kill-a-child-process-correctly // Kill process and all children processes. syscall.Kill(-pgid, 15) return } }