package schedulers import ( "bitbucket.org/sunybingcloud/electron/constants" "bitbucket.org/sunybingcloud/electron/def" "bitbucket.org/sunybingcloud/electron/rapl" "bitbucket.org/sunybingcloud/electron/utilities/mesosUtils" "bitbucket.org/sunybingcloud/electron/utilities/offerUtils" "errors" "fmt" "github.com/golang/protobuf/proto" mesos "github.com/mesos/mesos-go/mesosproto" "github.com/mesos/mesos-go/mesosutil" sched "github.com/mesos/mesos-go/scheduler" "log" "math" "os" "sync" "time" ) /* Piston Capper implements the Scheduler interface This is basically extending the BinPacking algorithm to also cap each node at a different values, corresponding to the load on that node. */ type BinPackedPistonCapper struct { base // Type embedded to inherit common functions taskMonitor map[string][]def.Task totalPower map[string]float64 ticker *time.Ticker isCapping bool } // New electron scheduler. func NewBinPackedPistonCapper(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string, classMapWatts bool) *BinPackedPistonCapper { logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log") if err != nil { log.Fatal(err) } s := &BinPackedPistonCapper{ base: base{ tasks: tasks, wattsAsAResource: wattsAsAResource, classMapWatts: classMapWatts, Shutdown: make(chan struct{}), Done: make(chan struct{}), PCPLog: make(chan struct{}), running: make(map[string]map[string]bool), RecordPCP: false, schedTrace: log.New(logFile, "", log.LstdFlags), }, taskMonitor: make(map[string][]def.Task), totalPower: make(map[string]float64), ticker: time.NewTicker(5 * time.Second), isCapping: false, } return s } // check whether task fits the offer or not. func (s *BinPackedPistonCapper) takeOffer(offer *mesos.Offer, offerWatts float64, offerCPU float64, offerRAM float64, totalWatts float64, totalCPU float64, totalRAM float64, task def.Task) bool { wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsToConsider log.Fatal(err) } if (!s.wattsAsAResource || (offerWatts >= (totalWatts + wattsConsideration))) && (offerCPU >= (totalCPU + task.CPU)) && (offerRAM >= (totalRAM + task.RAM)) { return true } else { return false } } // mutex var bpPistonMutex sync.Mutex func (s *BinPackedPistonCapper) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo { taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances) s.tasksCreated++ if !s.RecordPCP { // Turn on logging s.RecordPCP = true time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts } // If this is our first time running into this Agent if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok { s.running[offer.GetSlaveId().GoString()] = make(map[string]bool) } // Setting the task ID to the task. This is done so that we can consider each task to be different, // even though they have the same parameters. task.SetTaskID(*proto.String("electron-" + taskName)) // Add task to list of tasks running on node s.running[offer.GetSlaveId().GoString()][taskName] = true // Adding the task to the taskMonitor if len(s.taskMonitor[*offer.Hostname]) == 0 { s.taskMonitor[*offer.Hostname] = []def.Task{task} } else { s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task) } resources := []*mesos.Resource{ mesosutil.NewScalarResource("cpus", task.CPU), mesosutil.NewScalarResource("mem", task.RAM), } if s.wattsAsAResource { if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil { log.Printf("Watts considered for host[%s] and task[%s] = %f", *offer.Hostname, task.Name, wattsToConsider) resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider)) } else { // Error in determining wattsConsideration log.Fatal(err) } } return &mesos.TaskInfo{ Name: proto.String(taskName), TaskId: &mesos.TaskID{ Value: proto.String("electron-" + taskName), }, SlaveId: offer.SlaveId, Resources: resources, Command: &mesos.CommandInfo{ Value: proto.String(task.CMD), }, Container: &mesos.ContainerInfo{ Type: mesos.ContainerInfo_DOCKER.Enum(), Docker: &mesos.ContainerInfo_DockerInfo{ Image: proto.String(task.Image), Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated }, }, } } func (s *BinPackedPistonCapper) Disconnected(sched.SchedulerDriver) { // Need to stop the capping process s.ticker.Stop() bpPistonMutex.Lock() s.isCapping = false bpPistonMutex.Unlock() log.Println("Framework disconnected with master") } // go routine to cap the each node in the cluster at regular intervals of time. var bpPistonCapValues = make(map[string]float64) // Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead) var bpPistonPreviousRoundedCapValues = make(map[string]float64) func (s *BinPackedPistonCapper) startCapping() { go func() { for { select { case <-s.ticker.C: // Need to cap each node bpPistonMutex.Lock() for host, capValue := range bpPistonCapValues { roundedCapValue := float64(int(math.Floor(capValue + 0.5))) // has the cap value changed if prevRoundedCap, ok := bpPistonPreviousRoundedCapValues[host]; ok { if prevRoundedCap != roundedCapValue { if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil { log.Println(err) } else { log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5))) } bpPistonPreviousRoundedCapValues[host] = roundedCapValue } } else { if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil { log.Println(err) } else { log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5))) } bpPistonPreviousRoundedCapValues[host] = roundedCapValue } } bpPistonMutex.Unlock() } } }() } // Stop the capping func (s *BinPackedPistonCapper) stopCapping() { if s.isCapping { log.Println("Stopping the capping.") s.ticker.Stop() bpPistonMutex.Lock() s.isCapping = false bpPistonMutex.Unlock() } } func (s *BinPackedPistonCapper) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) { log.Printf("Received %d resource offers", len(offers)) // retrieving the total power for each host in the offers for _, offer := range offers { offerUtils.UpdateEnvironment(offer) if _, ok := s.totalPower[*offer.Hostname]; !ok { _, _, offerWatts := offerUtils.OfferAgg(offer) s.totalPower[*offer.Hostname] = offerWatts } } // Displaying the totalPower for host, tpower := range s.totalPower { log.Printf("TotalPower[%s] = %f", host, tpower) } /* Piston capping strategy Perform bin-packing of tasks on nodes in the cluster, making sure that no task is given less hard-limit resources than requested. For each set of tasks that are scheduled, compute the new cap values for each host in the cluster. At regular intervals of time, cap each node in the cluster. */ for _, offer := range offers { select { case <-s.Shutdown: log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]") driver.DeclineOffer(offer.Id, mesosUtils.LongFilter) log.Println("Number of tasks still running: ", s.tasksRunning) continue default: } fitTasks := []*mesos.TaskInfo{} offerCPU, offerRAM, offerWatts := offerUtils.OfferAgg(offer) offerTaken := false totalWatts := 0.0 totalCPU := 0.0 totalRAM := 0.0 // Store the partialLoad for host corresponding to this offer. // Once we can't fit any more tasks, we update capValue for this host with partialLoad and then launch the fit tasks. partialLoad := 0.0 for i := 0; i < len(s.tasks); i++ { task := s.tasks[i] wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } // Don't take offer if it doesn't match our task's host requirement if offerUtils.HostMismatch(*offer.Hostname, task.Host) { continue } for *task.Instances > 0 { // Does the task fit if s.takeOffer(offer, offerWatts, offerCPU, offerRAM, totalWatts, totalCPU, totalRAM, task) { // Start piston capping if haven't started yet if !s.isCapping { s.isCapping = true s.startCapping() } offerTaken = true totalWatts += wattsConsideration totalCPU += task.CPU totalRAM += task.RAM log.Println("Co-Located with: ") coLocated(s.running[offer.GetSlaveId().GoString()]) taskToSchedule := s.newTask(offer, task) fitTasks = append(fitTasks, taskToSchedule) log.Println("Inst: ", *task.Instances) s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue()) *task.Instances-- // updating the cap value for offer.Hostname partialLoad += ((wattsConsideration * constants.Tolerance) / s.totalPower[*offer.Hostname]) * 100 if *task.Instances <= 0 { // All instances of task have been scheduled. Remove it s.tasks = append(s.tasks[:i], s.tasks[i+1:]...) if len(s.tasks) <= 0 { log.Println("Done scheduling all tasks") close(s.Shutdown) } } } else { break // Continue on to next task } } } if offerTaken { // Updating the cap value for offer.Hostname bpPistonMutex.Lock() bpPistonCapValues[*offer.Hostname] += partialLoad bpPistonMutex.Unlock() log.Printf("Starting on [%s]\n", offer.GetHostname()) driver.LaunchTasks([]*mesos.OfferID{offer.Id}, fitTasks, mesosUtils.DefaultFilter) } else { // If there was no match for task log.Println("There is not enough resources to launch task: ") cpus, mem, watts := offerUtils.OfferAgg(offer) log.Printf("\n", cpus, mem, watts) driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter) } } } // Remove finished task from the taskMonitor func (s *BinPackedPistonCapper) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) { hostOfFinishedTask := "" indexOfFinishedTask := -1 found := false var finishedTask def.Task for host, tasks := range s.taskMonitor { for i, task := range tasks { if task.TaskID == finishedTaskID { hostOfFinishedTask = host indexOfFinishedTask = i found = true } } if found { break } } if hostOfFinishedTask != "" && indexOfFinishedTask != -1 { finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask] log.Printf("Removing task with TaskID [%s] from the list of running tasks\n", s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID) s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask], s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...) } else { return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor") } return finishedTask, hostOfFinishedTask, nil } func (s *BinPackedPistonCapper) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) { log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value) if *status.State == mesos.TaskState_TASK_RUNNING { bpPistonMutex.Lock() s.tasksRunning++ bpPistonMutex.Unlock() } else if IsTerminal(status.State) { delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value) // Deleting the task from the taskMonitor finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value) if err != nil { log.Println(err) } // Need to determine the watts consideration for the finishedTask var wattsConsideration float64 if s.classMapWatts { wattsConsideration = finishedTask.ClassToWatts[hostToPowerClass(hostOfFinishedTask)] } else { wattsConsideration = finishedTask.Watts } // Need to update the cap values for host of the finishedTask bpPistonMutex.Lock() bpPistonCapValues[hostOfFinishedTask] -= ((wattsConsideration * constants.Tolerance) / s.totalPower[hostOfFinishedTask]) * 100 // Checking to see if the cap value has become 0, in which case we uncap the host. if int(math.Floor(bpPistonCapValues[hostOfFinishedTask]+0.5)) == 0 { bpPistonCapValues[hostOfFinishedTask] = 100 } s.tasksRunning-- bpPistonMutex.Unlock() if s.tasksRunning == 0 { select { case <-s.Shutdown: s.stopCapping() close(s.Done) default: } } } log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value) }