package schedulers import ( "bitbucket.org/sunybingcloud/electron/constants" "bitbucket.org/sunybingcloud/electron/def" "bitbucket.org/sunybingcloud/electron/rapl" "bitbucket.org/sunybingcloud/electron/utilities/mesosUtils" "bitbucket.org/sunybingcloud/electron/utilities/offerUtils" "errors" "fmt" "github.com/golang/protobuf/proto" mesos "github.com/mesos/mesos-go/mesosproto" "github.com/mesos/mesos-go/mesosutil" sched "github.com/mesos/mesos-go/scheduler" "log" "math" "os" "sort" "sync" "time" ) // Decides if to take an offer or not func (s *BPSWMaxMinPistonCapping) takeOffer(offer *mesos.Offer, task def.Task, totalCPU, totalRAM, totalWatts float64) bool { cpus, mem, watts := offerUtils.OfferAgg(offer) //TODO: Insert watts calculation here instead of taking them as a parameter wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } if (cpus >= (totalCPU + task.CPU)) && (mem >= (totalRAM + task.RAM)) && (!s.wattsAsAResource || (watts >= (totalWatts + wattsConsideration))) { return true } return false } type BPSWMaxMinPistonCapping struct { base //Type embedding to inherit common functions taskMonitor map[string][]def.Task totalPower map[string]float64 ticker *time.Ticker isCapping bool } // New electron scheduler func NewBPSWMaxMinPistonCapping(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string, classMapWatts bool) *BPSWMaxMinPistonCapping { sort.Sort(def.WattsSorter(tasks)) logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log") if err != nil { log.Fatal(err) } s := &BPSWMaxMinPistonCapping{ base: base{ tasks: tasks, wattsAsAResource: wattsAsAResource, classMapWatts: classMapWatts, Shutdown: make(chan struct{}), Done: make(chan struct{}), PCPLog: make(chan struct{}), running: make(map[string]map[string]bool), RecordPCP: false, schedTrace: log.New(logFile, "", log.LstdFlags), }, taskMonitor: make(map[string][]def.Task), totalPower: make(map[string]float64), ticker: time.NewTicker(5 * time.Second), isCapping: false, } return s } func (s *BPSWMaxMinPistonCapping) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo { taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances) s.tasksCreated++ // Start recording only when we're creating the first task if !s.RecordPCP { // Turn on logging s.RecordPCP = true time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts } // If this is our first time running into this Agent if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok { s.running[offer.GetSlaveId().GoString()] = make(map[string]bool) } // Add task to list of tasks running on node s.running[offer.GetSlaveId().GoString()][taskName] = true // Setting the task ID to the task. This is done so that we can consider each task to be different // even though they have the same parameters. task.SetTaskID(*proto.String("electron-" + taskName)) // Add task to list of tasks running on node if len(s.taskMonitor[*offer.Hostname]) == 0 { s.taskMonitor[*offer.Hostname] = []def.Task{task} } else { s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task) } resources := []*mesos.Resource{ mesosutil.NewScalarResource("cpus", task.CPU), mesosutil.NewScalarResource("mem", task.RAM), } if s.wattsAsAResource { if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil { log.Printf("Watts considered for host[%s] and task[%s] = %f", *offer.Hostname, task.Name, wattsToConsider) resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider)) } else { // Error in determining wattsConsideration log.Fatal(err) } } return &mesos.TaskInfo{ Name: proto.String(taskName), TaskId: &mesos.TaskID{ Value: proto.String("electron-" + taskName), }, SlaveId: offer.SlaveId, Resources: resources, Command: &mesos.CommandInfo{ Value: proto.String(task.CMD), }, Container: &mesos.ContainerInfo{ Type: mesos.ContainerInfo_DOCKER.Enum(), Docker: &mesos.ContainerInfo_DockerInfo{ Image: proto.String(task.Image), Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated }, }, } } func (s *BPSWMaxMinPistonCapping) Disconnected(sched.SchedulerDriver) { // Need to stop the capping process s.ticker.Stop() bpMaxMinPistonCappingMutex.Lock() s.isCapping = false bpMaxMinPistonCappingMutex.Unlock() log.Println("Framework disconnected with master") } // mutex var bpMaxMinPistonCappingMutex sync.Mutex // go routine to cap each node in the cluster at regular intervals of time var bpMaxMinPistonCappingCapValues = make(map[string]float64) // Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead) var bpMaxMinPistonCappingPreviousRoundedCapValues = make(map[string]float64) func (s *BPSWMaxMinPistonCapping) startCapping() { go func() { for { select { case <-s.ticker.C: // Need to cap each node bpMaxMinPistonCappingMutex.Lock() for host, capValue := range bpMaxMinPistonCappingCapValues { roundedCapValue := float64(int(math.Floor(capValue + 0.5))) // has the cap value changed if previousRoundedCap, ok := bpMaxMinPistonCappingPreviousRoundedCapValues[host]; ok { if previousRoundedCap != roundedCapValue { if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil { log.Println(err) } else { log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue))) } bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue } } else { if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil { log.Println(err) } else { log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5))) } bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue } } bpMaxMinPistonCappingMutex.Unlock() } } }() } // Stop the capping func (s *BPSWMaxMinPistonCapping) stopCapping() { if s.isCapping { log.Println("Stopping the capping.") s.ticker.Stop() bpMaxMinPistonCappingMutex.Lock() s.isCapping = false bpMaxMinPistonCappingMutex.Unlock() } } // Determine if the remaining sapce inside of the offer is enough for // the task we need to create. If it is, create a TaskInfo and return it. func (s *BPSWMaxMinPistonCapping) CheckFit( i int, task def.Task, wattsConsideration float64, offer *mesos.Offer, totalCPU *float64, totalRAM *float64, totalWatts *float64, partialLoad *float64) (bool, *mesos.TaskInfo) { // Does the task fit if s.takeOffer(offer, task, *totalCPU, *totalRAM, *totalWatts) { // Start piston capping if haven't started yet if !s.isCapping { s.isCapping = true s.startCapping() } *totalWatts += wattsConsideration *totalCPU += task.CPU *totalRAM += task.RAM log.Println("Co-Located with: ") coLocated(s.running[offer.GetSlaveId().GoString()]) taskToSchedule := s.newTask(offer, task) fmt.Println("Inst: ", *task.Instances) s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue()) *task.Instances-- *partialLoad += ((wattsConsideration * constants.Tolerance) / s.totalPower[*offer.Hostname]) * 100 if *task.Instances <= 0 { // All instances of task have been scheduled, remove it s.tasks = append(s.tasks[:i], s.tasks[i+1:]...) if len(s.tasks) <= 0 { log.Println("Done scheduling all tasks") close(s.Shutdown) } } return true, taskToSchedule } return false, nil } func (s *BPSWMaxMinPistonCapping) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) { log.Printf("Received %d resource offers", len(offers)) for _, offer := range offers { offerUtils.UpdateEnvironment(offer) select { case <-s.Shutdown: log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]") driver.DeclineOffer(offer.Id, mesosUtils.LongFilter) log.Println("Number of tasks still running: ", s.tasksRunning) continue default: } tasks := []*mesos.TaskInfo{} offerTaken := false totalWatts := 0.0 totalCPU := 0.0 totalRAM := 0.0 // Store the partialLoad for host corresponding to this offer // Once we can't fit any more tasks, we update the capValue for this host using partialLoad and then launch the fit tasks. partialLoad := 0.0 // Assumes s.tasks is ordered in non-decreasing median max peak order // Attempt to schedule a single instance of the heaviest workload available first // Start from the back until one fits for i := len(s.tasks) - 1; i >= 0; i-- { task := s.tasks[i] wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } // Don't take offer if it doesn't match our task's host requirement if offerUtils.HostMismatch(*offer.Hostname, task.Host) { continue } // TODO: Fix this so index doesn't need to be passed taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer, &totalCPU, &totalRAM, &totalWatts, &partialLoad) if taken { offerTaken = true tasks = append(tasks, taskToSchedule) break } } // Pack the rest of the offer with the smallest tasks for i := 0; i < len(s.tasks); i++ { task := s.tasks[i] wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } // Don't take offer if it doesn't match our task's host requirement if offerUtils.HostMismatch(*offer.Hostname, task.Host) { continue } for *task.Instances > 0 { // TODO: Fix this so index doesn't need to be passed taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer, &totalCPU, &totalRAM, &totalWatts, &partialLoad) if taken { offerTaken = true tasks = append(tasks, taskToSchedule) } else { break // Continue on to next task } } } if offerTaken { // Updating the cap value for offer.Hostname bpMaxMinPistonCappingMutex.Lock() bpMaxMinPistonCappingCapValues[*offer.Hostname] += partialLoad bpMaxMinPistonCappingMutex.Unlock() log.Printf("Starting on [%s]\n", offer.GetHostname()) driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, mesosUtils.DefaultFilter) } else { // If there was no match for the task fmt.Println("There is not enough resources to launch a task:") cpus, mem, watts := offerUtils.OfferAgg(offer) log.Printf("\n", cpus, mem, watts) driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter) } } } // Remove finished task from the taskMonitor func (s *BPSWMaxMinPistonCapping) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) { hostOfFinishedTask := "" indexOfFinishedTask := -1 found := false var finishedTask def.Task for host, tasks := range s.taskMonitor { for i, task := range tasks { if task.TaskID == finishedTaskID { hostOfFinishedTask = host indexOfFinishedTask = i found = true } } if found { break } } if hostOfFinishedTask != "" && indexOfFinishedTask != -1 { finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask] log.Printf("Removing task with TaskID [%s] from the list of running tasks\n", s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID) s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask], s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...) } else { return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor") } return finishedTask, hostOfFinishedTask, nil } func (s *BPSWMaxMinPistonCapping) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) { log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value) if *status.State == mesos.TaskState_TASK_RUNNING { bpMaxMinPistonCappingMutex.Lock() s.tasksRunning++ bpMaxMinPistonCappingMutex.Unlock() } else if IsTerminal(status.State) { delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value) // Deleting the task from the taskMonitor finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value) if err != nil { log.Println(err) } // Need to determine the watts consideration for the finishedTask var wattsConsideration float64 if s.classMapWatts { wattsConsideration = finishedTask.ClassToWatts[hostToPowerClass(hostOfFinishedTask)] } else { wattsConsideration = finishedTask.Watts } // Need to update the cap values for host of the finishedTask bpMaxMinPistonCappingMutex.Lock() bpMaxMinPistonCappingCapValues[hostOfFinishedTask] -= ((wattsConsideration * constants.Tolerance) / s.totalPower[hostOfFinishedTask]) * 100 // Checking to see if the cap value has become 0, in which case we uncap the host. if int(math.Floor(bpMaxMinPistonCappingCapValues[hostOfFinishedTask]+0.5)) == 0 { bpMaxMinPistonCappingCapValues[hostOfFinishedTask] = 100 } s.tasksRunning-- bpMaxMinPistonCappingMutex.Unlock() if s.tasksRunning == 0 { select { case <-s.Shutdown: s.stopCapping() close(s.Done) default: } } } log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value) }