package schedulers import ( "bitbucket.org/sunybingcloud/electron/constants" "bitbucket.org/sunybingcloud/electron/def" powCap "bitbucket.org/sunybingcloud/electron/powerCapping" "bitbucket.org/sunybingcloud/electron/rapl" "bitbucket.org/sunybingcloud/electron/utilities/mesosUtils" "bitbucket.org/sunybingcloud/electron/utilities/offerUtils" "fmt" "github.com/golang/protobuf/proto" mesos "github.com/mesos/mesos-go/mesosproto" "github.com/mesos/mesos-go/mesosutil" sched "github.com/mesos/mesos-go/scheduler" "log" "math" "os" "sort" "sync" "time" ) // Decides if to take an offer or not func (s *BPSWMaxMinProacCC) takeOffer(offer *mesos.Offer, task def.Task, totalCPU, totalRAM, totalWatts float64) bool { cpus, mem, watts := offerUtils.OfferAgg(offer) //TODO: Insert watts calculation here instead of taking them as a parameter wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } if (cpus >= (totalCPU + task.CPU)) && (mem >= (totalRAM + task.RAM)) && (!s.wattsAsAResource || (watts >= (totalWatts + wattsConsideration))) { return true } return false } type BPSWMaxMinProacCC struct { base // Type embedding to inherit common functions taskMonitor map[string][]def.Task availablePower map[string]float64 totalPower map[string]float64 capper *powCap.ClusterwideCapper ticker *time.Ticker recapTicker *time.Ticker isCapping bool // indicate whether we are currently performing cluster-wide capping. isRecapping bool // indicate whether we are currently performing cluster-wide recapping. } // New electron scheduler func NewBPSWMaxMinProacCC(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string, classMapWatts bool) *BPSWMaxMinProacCC { sort.Sort(def.WattsSorter(tasks)) logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log") if err != nil { log.Fatal(err) } s := &BPSWMaxMinProacCC{ base: base{ tasks: tasks, wattsAsAResource: wattsAsAResource, classMapWatts: classMapWatts, Shutdown: make(chan struct{}), Done: make(chan struct{}), PCPLog: make(chan struct{}), running: make(map[string]map[string]bool), RecordPCP: false, schedTrace: log.New(logFile, "", log.LstdFlags), }, taskMonitor: make(map[string][]def.Task), availablePower: make(map[string]float64), totalPower: make(map[string]float64), capper: powCap.GetClusterwideCapperInstance(), ticker: time.NewTicker(10 * time.Second), recapTicker: time.NewTicker(20 * time.Second), isCapping: false, isRecapping: false, } return s } // mutex var bpMaxMinProacCCMutex sync.Mutex func (s *BPSWMaxMinProacCC) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo { taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances) s.tasksCreated++ if !s.RecordPCP { // Turn on logging. s.RecordPCP = true time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts } // If this is our first time running into this Agent if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok { s.running[offer.GetSlaveId().GoString()] = make(map[string]bool) } // Setting the task ID to the task. This is done so that we can consider each task to be different, // even though they have the same parameters. task.SetTaskID(*proto.String("electron-" + taskName)) // Add task to the list of tasks running on the node. s.running[offer.GetSlaveId().GoString()][taskName] = true if len(s.taskMonitor[*offer.Hostname]) == 0 { s.taskMonitor[*offer.Hostname] = []def.Task{task} } else { s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task) } resources := []*mesos.Resource{ mesosutil.NewScalarResource("cpus", task.CPU), mesosutil.NewScalarResource("mem", task.RAM), } if s.wattsAsAResource { if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil { log.Printf("Watts considered for host[%s] and task[%s] = %f", *offer.Hostname, task.Name, wattsToConsider) resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider)) } else { // Error in determining wattsConsideration log.Fatal(err) } } return &mesos.TaskInfo{ Name: proto.String(taskName), TaskId: &mesos.TaskID{ Value: proto.String("electron-" + taskName), }, SlaveId: offer.SlaveId, Resources: resources, Command: &mesos.CommandInfo{ Value: proto.String(task.CMD), }, Container: &mesos.ContainerInfo{ Type: mesos.ContainerInfo_DOCKER.Enum(), Docker: &mesos.ContainerInfo_DockerInfo{ Image: proto.String(task.Image), Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated }, }, } } // go routine to cap the entire cluster in regular intervals of time. var bpMaxMinProacCCCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet. var bpMaxMinProacCCNewCapValue = 0.0 // newly computed cap value func (s *BPSWMaxMinProacCC) startCapping() { go func() { for { select { case <-s.ticker.C: // Need to cap the cluster only if new cap value different from old cap value. // This way we don't unnecessarily cap the cluster. bpMaxMinProacCCMutex.Lock() if s.isCapping { if int(math.Floor(bpMaxMinProacCCNewCapValue+0.5)) != int(math.Floor(bpMaxMinProacCCCapValue+0.5)) { // updating cap value bpMaxMinProacCCCapValue = bpMaxMinProacCCNewCapValue if bpMaxMinProacCCCapValue > 0.0 { for host, _ := range constants.Hosts { // Rounding cap value to nearest int if err := rapl.Cap(host, "rapl", float64(int(math.Floor(bpMaxMinProacCCCapValue+0.5)))); err != nil { log.Println(err) } } log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCCapValue+0.5))) } } } bpMaxMinProacCCMutex.Unlock() } } }() } // go routine to recap the entire cluster in regular intervals of time. var bpMaxMinProacCCRecapValue = 0.0 // The cluster-wide cap value when recapping. func (s *BPSWMaxMinProacCC) startRecapping() { go func() { for { select { case <-s.recapTicker.C: bpMaxMinProacCCMutex.Lock() // If stopped performing cluster-wide capping, then we need to recap. if s.isRecapping && bpMaxMinProacCCRecapValue > 0.0 { for host, _ := range constants.Hosts { // Rounding the recap value to the nearest int if err := rapl.Cap(host, "rapl", float64(int(math.Floor(bpMaxMinProacCCRecapValue+0.5)))); err != nil { log.Println(err) } } log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCRecapValue+0.5))) } // Setting the recapping to false s.isRecapping = false bpMaxMinProacCCMutex.Unlock() } } }() } // Stop cluster-wide capping func (s *BPSWMaxMinProacCC) stopCapping() { if s.isCapping { log.Println("Stopping the cluster-wide capping.") s.ticker.Stop() bpMaxMinProacCCMutex.Lock() s.isCapping = false s.isRecapping = true bpMaxMinProacCCMutex.Unlock() } } // Stop the cluster-wide recapping func (s *BPSWMaxMinProacCC) stopRecapping() { // If not capping, then definitely recapping. if !s.isCapping && s.isRecapping { log.Println("Stopping the cluster-wide re-capping.") s.recapTicker.Stop() bpMaxMinProacCCMutex.Lock() s.isRecapping = false bpMaxMinProacCCMutex.Unlock() } } // Determine if the remaining space inside of the offer is enough for // the task we need to create. If it is, create TaskInfo and return it. func (s *BPSWMaxMinProacCC) CheckFit( i int, task def.Task, wattsConsideration float64, offer *mesos.Offer, totalCPU *float64, totalRAM *float64, totalWatts *float64) (bool, *mesos.TaskInfo) { // Does the task fit if s.takeOffer(offer, task, *totalCPU, *totalRAM, *totalWatts) { // Capping the cluster if haven't yet started if !s.isCapping { bpMaxMinProacCCMutex.Lock() s.isCapping = true bpMaxMinProacCCMutex.Unlock() s.startCapping() } tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task) if err == nil { bpMaxMinProacCCMutex.Lock() bpMaxMinProacCCNewCapValue = tempCap bpMaxMinProacCCMutex.Unlock() } else { log.Println("Failed to determine new cluster-wide cap:") log.Println(err) } *totalWatts += wattsConsideration *totalCPU += task.CPU *totalRAM += task.RAM log.Println("Co-Located with: ") coLocated(s.running[offer.GetSlaveId().GoString()]) taskToSchedule := s.newTask(offer, task) fmt.Println("Inst: ", *task.Instances) s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue()) *task.Instances-- if *task.Instances <= 0 { // All instances of task have been scheduled, remove it s.tasks = append(s.tasks[:i], s.tasks[i+1:]...) if len(s.tasks) <= 0 { log.Println("Done scheduling all tasks") // Need to stop the cluster wide capping s.stopCapping() s.startRecapping() // Load changes after every task finishes and hence, we need to change the capping of the cluster. close(s.Shutdown) } } return true, taskToSchedule } return false, nil } func (s *BPSWMaxMinProacCC) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) { log.Printf("Received %d resource offers", len(offers)) // retrieving the available power for all the hosts in the offers. for _, offer := range offers { offerUtils.UpdateEnvironment(offer) _, _, offerWatts := offerUtils.OfferAgg(offer) s.availablePower[*offer.Hostname] = offerWatts // setting total power if the first time if _, ok := s.totalPower[*offer.Hostname]; !ok { s.totalPower[*offer.Hostname] = offerWatts } } for host, tpower := range s.totalPower { log.Printf("TotalPower[%s] = %f", host, tpower) } for _, offer := range offers { select { case <-s.Shutdown: log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]") driver.DeclineOffer(offer.Id, mesosUtils.LongFilter) log.Println("Number of tasks still running: ", s.tasksRunning) continue default: } tasks := []*mesos.TaskInfo{} offerTaken := false totalWatts := 0.0 totalCPU := 0.0 totalRAM := 0.0 // Assumes s.tasks is ordered in non-decreasing median max peak order // Attempt to schedule a single instance of the heaviest workload available first // Start from the back until one fits for i := len(s.tasks) - 1; i >= 0; i-- { task := s.tasks[i] wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } // Don't take offer if it doesn't match our task's host requirement if offerUtils.HostMismatch(*offer.Hostname, task.Host) { continue } // TODO: Fix this so index doesn't need to be passed taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer, &totalCPU, &totalRAM, &totalWatts) if taken { offerTaken = true tasks = append(tasks, taskToSchedule) break } } // Pack the rest of the offer with the smallest tasks for i := 0; i < len(s.tasks); i++ { task := s.tasks[i] wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer) if err != nil { // Error in determining wattsConsideration log.Fatal(err) } // Don't take offer if it doesn't match our task's host requirement if offerUtils.HostMismatch(*offer.Hostname, task.Host) { continue } for *task.Instances > 0 { // TODO: Fix this so index doesn't need to be passed taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer, &totalCPU, &totalRAM, &totalWatts) if taken { offerTaken = true tasks = append(tasks, taskToSchedule) } else { break // Continue on to next task } } } if offerTaken { log.Printf("Starting on [%s]\n", offer.GetHostname()) driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, mesosUtils.DefaultFilter) } else { // If there was no match for the task fmt.Println("There is not enough resources to launch a task:") cpus, mem, watts := offerUtils.OfferAgg(offer) log.Printf("\n", cpus, mem, watts) driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter) } } } func (s *BPSWMaxMinProacCC) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) { log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value) if *status.State == mesos.TaskState_TASK_RUNNING { s.tasksRunning++ } else if IsTerminal(status.State) { delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value) // Need to remove the task from the window s.capper.TaskFinished(*status.TaskId.Value) // Determining the new cluster wide recap value tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value) //tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value) if err == nil { // If new determined recap value is different from the current recap value, then we need to recap. if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpMaxMinProacCCRecapValue+0.5)) { bpMaxMinProacCCRecapValue = tempCap bpMaxMinProacCCMutex.Lock() s.isRecapping = true bpMaxMinProacCCMutex.Unlock() log.Printf("Determined re-cap value: %f\n", bpMaxMinProacCCRecapValue) } else { bpMaxMinProacCCMutex.Lock() s.isRecapping = false bpMaxMinProacCCMutex.Unlock() } } else { log.Println(err) } s.tasksRunning-- if s.tasksRunning == 0 { select { case <-s.Shutdown: // Need to stop the cluster-wide recapping s.stopRecapping() close(s.Done) default: } } } log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value) }