This repository has been archived on 2024-04-10. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
elektron/def/taskUtils.go
Pradyumna Kaushik 6c77aa777e Merged in resourceUsageTracking (pull request #2)
ResourceUsageTracking

Approved-by: Akash Kothawale <akothaw1@binghamton.edu>
Approved-by: Pradyumna Kaushik <pkaushi1@binghamton.edu>
2018-09-23 18:36:07 -04:00

161 lines
4.9 KiB
Go

package def
import (
"errors"
"fmt"
"github.com/mash/gokmeans"
"log"
"sort"
)
// Information about a cluster of tasks.
type TaskCluster struct {
ClusterIndex int
Tasks []Task
SizeScore int // How many other clusters is this cluster bigger than
}
// Classification of Tasks using KMeans clustering using the watts consumption observations.
type TasksToClassify []Task
// Basic taskObservation calculator. This returns an array consisting of the MMPU requirements of a task.
func (tc TasksToClassify) taskObservationCalculator(task Task) []float64 {
if task.ClassToWatts != nil {
// Taking the aggregate.
observations := []float64{}
for _, watts := range task.ClassToWatts {
observations = append(observations, watts)
}
return observations
} else if task.Watts != 0.0 {
return []float64{task.Watts}
} else {
log.Fatal("Unable to classify tasks. Missing Watts or ClassToWatts attribute in workload.")
return []float64{0.0} // Won't reach here.
}
}
func ClassifyTasks(tasks []Task, numberOfClusters int) []TaskCluster {
tc := TasksToClassify(tasks)
return tc.classify(numberOfClusters, tc.taskObservationCalculator)
}
func (tc TasksToClassify) classify(numberOfClusters int, taskObservation func(task Task) []float64) []TaskCluster {
clusters := make(map[int][]Task)
observations := getObservations(tc, taskObservation)
// TODO: Make the max number of rounds configurable based on the size of the workload.
// The max number of rounds (currently defaulted to 100) is the number of iterations performed to obtain
// distinct clusters. When the data size becomes very large, we would need more iterations for clustering.
if trained, centroids := gokmeans.Train(observations, numberOfClusters, 100); trained {
for i := 0; i < len(observations); i++ {
observation := observations[i]
classIndex := gokmeans.Nearest(observation, centroids)
if _, ok := clusters[classIndex]; ok {
clusters[classIndex] = append(clusters[classIndex], tc[i])
} else {
clusters[classIndex] = []Task{tc[i]}
}
}
}
return labelAndOrder(clusters, numberOfClusters, taskObservation)
}
// Record observations.
func getObservations(tasks []Task, taskObservation func(task Task) []float64) []gokmeans.Node {
observations := []gokmeans.Node{}
for i := 0; i < len(tasks); i++ {
observations = append(observations, taskObservation(tasks[i]))
}
return observations
}
// Size tasks based on the power consumption.
// TODO: Size the cluster in a better way other than just taking an aggregate of the watts resource requirement.
func clusterSize(tasks []Task, taskObservation func(task Task) []float64) float64 {
size := 0.0
for _, task := range tasks {
for _, observation := range taskObservation(task) {
size += observation
}
}
return size
}
// Order clusters in increasing order of task heaviness.
func labelAndOrder(clusters map[int][]Task, numberOfClusters int, taskObservation func(task Task) []float64) []TaskCluster {
// Determine the position of the cluster in the ordered list of clusters.
sizedClusters := []TaskCluster{}
// Initializing.
for i := 0; i < numberOfClusters; i++ {
sizedClusters = append(sizedClusters, TaskCluster{
ClusterIndex: i,
Tasks: clusters[i],
SizeScore: 0,
})
}
for i := 0; i < numberOfClusters-1; i++ {
// Sizing the current cluster.
sizeI := clusterSize(clusters[i], taskObservation)
// Comparing with the other clusters.
for j := i + 1; j < numberOfClusters; j++ {
sizeJ := clusterSize(clusters[j], taskObservation)
if sizeI > sizeJ {
sizedClusters[i].SizeScore++
} else {
sizedClusters[j].SizeScore++
}
}
}
// Sorting the clusters based on sizeScore.
sort.SliceStable(sizedClusters, func(i, j int) bool {
return sizedClusters[i].SizeScore <= sizedClusters[j].SizeScore
})
return sizedClusters
}
// Generic Task Sorter.
// Be able to sort an array of tasks based on any of the tasks' resources.
func SortTasks(ts []Task, sb sortBy) {
sort.SliceStable(ts, func(i, j int) bool {
return sb(&ts[i]) <= sb(&ts[j])
})
}
// Map taskIDs to resource requirements.
type TaskResources struct {
CPU float64
Ram float64
Watts float64
}
var taskResourceRequirement map[string]*TaskResources
// Record resource requirements for all the tasks.
func initTaskResourceRequirements(tasks []Task) {
taskResourceRequirement = make(map[string]*TaskResources)
baseTaskID := "electron-"
for _, task := range tasks {
for i := *task.Instances; i > 0; i-- {
taskID := fmt.Sprintf("%s-%d", baseTaskID+task.Name, i)
taskResourceRequirement[taskID] = &TaskResources{
CPU: task.CPU,
Ram: task.RAM,
Watts: task.Watts,
}
}
}
}
// Retrieve the resource requirement of a task specified by the TaskID
func GetResourceRequirement(taskID string) (TaskResources, error) {
if tr, ok := taskResourceRequirement[taskID]; ok {
return *tr, nil
} else {
// Shouldn't be here.
return TaskResources{}, errors.New("Invalid TaskID: " + taskID)
}
}