398 lines
13 KiB
Go
398 lines
13 KiB
Go
/*
|
|
Ranked based cluster wide capping.
|
|
|
|
Note: Sorting the tasks right in the beginning, in ascending order of watts.
|
|
You are hence certain that the tasks that didn't fit are the ones that require more resources,
|
|
and hence, you can find a way to address that issue.
|
|
On the other hand, if you use first fit to fit the tasks and then sort them to determine the cap,
|
|
you are never certain as which tasks are the ones that don't fit and hence, it becomes much harder
|
|
to address this issue.
|
|
*/
|
|
package schedulers
|
|
|
|
import (
|
|
"bitbucket.org/sunybingcloud/electron/constants"
|
|
"bitbucket.org/sunybingcloud/electron/def"
|
|
powCap "bitbucket.org/sunybingcloud/electron/powerCapping"
|
|
"bitbucket.org/sunybingcloud/electron/rapl"
|
|
"bitbucket.org/sunybingcloud/electron/utilities/mesosUtils"
|
|
"bitbucket.org/sunybingcloud/electron/utilities/offerUtils"
|
|
"fmt"
|
|
"github.com/golang/protobuf/proto"
|
|
mesos "github.com/mesos/mesos-go/mesosproto"
|
|
"github.com/mesos/mesos-go/mesosutil"
|
|
sched "github.com/mesos/mesos-go/scheduler"
|
|
"log"
|
|
"math"
|
|
"os"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
// Decides if to taken an offer or not
|
|
func (s *FirstFitSortedWattsProacCC) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
|
offer_cpu, offer_mem, offer_watts := offerUtils.OfferAgg(offer)
|
|
|
|
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
|
|
if err != nil {
|
|
// Error in determining wattsToConsider
|
|
log.Fatal(err)
|
|
}
|
|
if offer_cpu >= task.CPU && offer_mem >= task.RAM && (!s.wattsAsAResource || offer_watts >= wattsConsideration) {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// electronScheduler implements the Scheduler interface
|
|
type FirstFitSortedWattsProacCC struct {
|
|
base // Type embedded to inherit common functions
|
|
taskMonitor map[string][]def.Task // store tasks that are currently running.
|
|
availablePower map[string]float64 // available power for each node in the cluster.
|
|
totalPower map[string]float64 // total power for each node in the cluster.
|
|
capper *powCap.ClusterwideCapper
|
|
ticker *time.Ticker
|
|
recapTicker *time.Ticker
|
|
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
|
isRecapping bool // indicate whether we are currently performing cluster wide re-capping.
|
|
}
|
|
|
|
// New electron scheduler.
|
|
func NewFirstFitSortedWattsProacCC(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string,
|
|
classMapWatts bool) *FirstFitSortedWattsProacCC {
|
|
|
|
// Sorting tasks in ascending order of watts
|
|
sort.Sort(def.WattsSorter(tasks))
|
|
|
|
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
|
|
s := &FirstFitSortedWattsProacCC{
|
|
base: base{
|
|
tasks: tasks,
|
|
wattsAsAResource: wattsAsAResource,
|
|
classMapWatts: classMapWatts,
|
|
Shutdown: make(chan struct{}),
|
|
Done: make(chan struct{}),
|
|
PCPLog: make(chan struct{}),
|
|
running: make(map[string]map[string]bool),
|
|
RecordPCP: false,
|
|
schedTrace: log.New(logFile, "", log.LstdFlags),
|
|
},
|
|
taskMonitor: make(map[string][]def.Task),
|
|
availablePower: make(map[string]float64),
|
|
totalPower: make(map[string]float64),
|
|
capper: powCap.GetClusterwideCapperInstance(),
|
|
ticker: time.NewTicker(10 * time.Second),
|
|
recapTicker: time.NewTicker(20 * time.Second),
|
|
isCapping: false,
|
|
isRecapping: false,
|
|
}
|
|
return s
|
|
}
|
|
|
|
// mutex
|
|
var rankedMutex sync.Mutex
|
|
|
|
func (s *FirstFitSortedWattsProacCC) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
|
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
|
s.tasksCreated++
|
|
|
|
if !s.RecordPCP {
|
|
// Turn on logging.
|
|
s.RecordPCP = true
|
|
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
|
|
}
|
|
|
|
// If this is our first time running into this Agent
|
|
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
|
|
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
|
|
}
|
|
|
|
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
|
// even though they have the same parameters.
|
|
task.SetTaskID(*proto.String("electron-" + taskName))
|
|
// Add task to the list of tasks running on the node.
|
|
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
|
if len(s.taskMonitor[*offer.Hostname]) == 0 {
|
|
s.taskMonitor[*offer.Hostname] = []def.Task{task}
|
|
} else {
|
|
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
|
|
}
|
|
|
|
resources := []*mesos.Resource{
|
|
mesosutil.NewScalarResource("cpus", task.CPU),
|
|
mesosutil.NewScalarResource("mem", task.RAM),
|
|
}
|
|
|
|
if s.wattsAsAResource {
|
|
if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil {
|
|
resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider))
|
|
} else {
|
|
// Error in determining wattsToConsider
|
|
log.Fatal(err)
|
|
}
|
|
}
|
|
|
|
return &mesos.TaskInfo{
|
|
Name: proto.String(taskName),
|
|
TaskId: &mesos.TaskID{
|
|
Value: proto.String("electron-" + taskName),
|
|
},
|
|
SlaveId: offer.SlaveId,
|
|
Resources: resources,
|
|
Command: &mesos.CommandInfo{
|
|
Value: proto.String(task.CMD),
|
|
},
|
|
Container: &mesos.ContainerInfo{
|
|
Type: mesos.ContainerInfo_DOCKER.Enum(),
|
|
Docker: &mesos.ContainerInfo_DockerInfo{
|
|
Image: proto.String(task.Image),
|
|
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
func (s *FirstFitSortedWattsProacCC) Disconnected(sched.SchedulerDriver) {
|
|
// Need to stop the capping process.
|
|
s.ticker.Stop()
|
|
s.recapTicker.Stop()
|
|
rankedMutex.Lock()
|
|
s.isCapping = false
|
|
rankedMutex.Unlock()
|
|
log.Println("Framework disconnected with master")
|
|
}
|
|
|
|
// go routine to cap the entire cluster in regular intervals of time.
|
|
var rankedCurrentCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
|
|
func (s *FirstFitSortedWattsProacCC) startCapping() {
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-s.ticker.C:
|
|
// Need to cap the cluster to the rankedCurrentCapValue.
|
|
rankedMutex.Lock()
|
|
if rankedCurrentCapValue > 0.0 {
|
|
for host, _ := range constants.Hosts {
|
|
// Rounding currentCapValue to the nearest int.
|
|
if err := rapl.Cap(host, "rapl", float64(int(math.Floor(rankedCurrentCapValue+0.5)))); err != nil {
|
|
log.Println(err)
|
|
}
|
|
}
|
|
log.Printf("Capped the cluster to %d", int(math.Floor(rankedCurrentCapValue+0.5)))
|
|
}
|
|
rankedMutex.Unlock()
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// go routine to cap the entire cluster in regular intervals of time.
|
|
var rankedRecapValue = 0.0 // The cluster wide cap value when recapping.
|
|
func (s *FirstFitSortedWattsProacCC) startRecapping() {
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-s.recapTicker.C:
|
|
rankedMutex.Lock()
|
|
// If stopped performing cluster wide capping then we need to explicitly cap the entire cluster.
|
|
if s.isRecapping && rankedRecapValue > 0.0 {
|
|
for host, _ := range constants.Hosts {
|
|
// Rounding currentCapValue to the nearest int.
|
|
if err := rapl.Cap(host, "rapl", float64(int(math.Floor(rankedRecapValue+0.5)))); err != nil {
|
|
log.Println(err)
|
|
}
|
|
}
|
|
log.Printf("Recapped the cluster to %d", int(math.Floor(rankedRecapValue+0.5)))
|
|
}
|
|
// setting recapping to false
|
|
s.isRecapping = false
|
|
rankedMutex.Unlock()
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// Stop cluster wide capping
|
|
func (s *FirstFitSortedWattsProacCC) stopCapping() {
|
|
if s.isCapping {
|
|
log.Println("Stopping the cluster wide capping.")
|
|
s.ticker.Stop()
|
|
fcfsMutex.Lock()
|
|
s.isCapping = false
|
|
s.isRecapping = true
|
|
fcfsMutex.Unlock()
|
|
}
|
|
}
|
|
|
|
// Stop cluster wide Recapping
|
|
func (s *FirstFitSortedWattsProacCC) stopRecapping() {
|
|
// If not capping, then definitely recapping.
|
|
if !s.isCapping && s.isRecapping {
|
|
log.Println("Stopping the cluster wide re-capping.")
|
|
s.recapTicker.Stop()
|
|
fcfsMutex.Lock()
|
|
s.isRecapping = false
|
|
fcfsMutex.Unlock()
|
|
}
|
|
}
|
|
|
|
func (s *FirstFitSortedWattsProacCC) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
|
|
log.Printf("Received %d resource offers", len(offers))
|
|
|
|
// retrieving the available power for all the hosts in the offers.
|
|
for _, offer := range offers {
|
|
offerUtils.UpdateEnvironment(offer)
|
|
_, _, offer_watts := offerUtils.OfferAgg(offer)
|
|
s.availablePower[*offer.Hostname] = offer_watts
|
|
// setting total power if the first time.
|
|
if _, ok := s.totalPower[*offer.Hostname]; !ok {
|
|
s.totalPower[*offer.Hostname] = offer_watts
|
|
}
|
|
}
|
|
|
|
for host, tpower := range s.totalPower {
|
|
log.Printf("TotalPower[%s] = %f", host, tpower)
|
|
}
|
|
|
|
for _, offer := range offers {
|
|
select {
|
|
case <-s.Shutdown:
|
|
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
|
|
driver.DeclineOffer(offer.Id, mesosUtils.LongFilter)
|
|
|
|
log.Println("Number of tasks still running: ", s.tasksRunning)
|
|
continue
|
|
default:
|
|
}
|
|
|
|
/*
|
|
Ranked cluster wide capping strategy
|
|
|
|
For each task in the sorted tasks,
|
|
1. Need to check whether the offer can be taken or not (based on CPU, RAM and WATTS requirements).
|
|
2. If the task fits the offer, then need to determine the cluster wide cap.'
|
|
3. rankedCurrentCapValue is updated with the determined cluster wide cap.
|
|
|
|
Once we are done scheduling all the tasks,
|
|
we start recalculating the cluster wide cap each time a task finishes.
|
|
|
|
Cluster wide capping is currently performed at regular intervals of time.
|
|
*/
|
|
offerTaken := false
|
|
|
|
for i := 0; i < len(s.tasks); i++ {
|
|
task := s.tasks[i]
|
|
// Don't take offer if it doesn't match our task's host requirement
|
|
if offerUtils.HostMismatch(*offer.Hostname, task.Host) {
|
|
continue
|
|
}
|
|
|
|
// Does the task fit.
|
|
if s.takeOffer(offer, task) {
|
|
// Capping the cluster if haven't yet started
|
|
if !s.isCapping {
|
|
rankedMutex.Lock()
|
|
s.isCapping = true
|
|
rankedMutex.Unlock()
|
|
s.startCapping()
|
|
}
|
|
offerTaken = true
|
|
tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task)
|
|
|
|
if err == nil {
|
|
rankedMutex.Lock()
|
|
rankedCurrentCapValue = tempCap
|
|
rankedMutex.Unlock()
|
|
} else {
|
|
log.Println("Failed to determine the new cluster wide cap: ", err)
|
|
}
|
|
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
|
taskToSchedule := s.newTask(offer, task)
|
|
to_schedule := []*mesos.TaskInfo{taskToSchedule}
|
|
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, mesosUtils.DefaultFilter)
|
|
log.Printf("Inst: %d", *task.Instances)
|
|
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
|
|
*task.Instances--
|
|
if *task.Instances <= 0 {
|
|
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
|
s.tasks[i] = s.tasks[len(s.tasks)-1]
|
|
s.tasks = s.tasks[:len(s.tasks)-1]
|
|
|
|
if len(s.tasks) <= 0 {
|
|
log.Println("Done scheduling all tasks")
|
|
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
|
s.stopCapping()
|
|
s.startRecapping()
|
|
close(s.Shutdown)
|
|
}
|
|
}
|
|
break // Offer taken, move on.
|
|
} else {
|
|
// Task doesn't fit the offer. Move onto the next offer.
|
|
}
|
|
}
|
|
|
|
// If no tasks fit the offer, then declining the offer.
|
|
if !offerTaken {
|
|
log.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
|
cpus, mem, watts := offerUtils.OfferAgg(offer)
|
|
|
|
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
|
driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *FirstFitSortedWattsProacCC) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
|
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
|
|
|
|
if *status.State == mesos.TaskState_TASK_RUNNING {
|
|
rankedMutex.Lock()
|
|
s.tasksRunning++
|
|
rankedMutex.Unlock()
|
|
} else if IsTerminal(status.State) {
|
|
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
|
rankedMutex.Lock()
|
|
s.tasksRunning--
|
|
rankedMutex.Unlock()
|
|
if s.tasksRunning == 0 {
|
|
select {
|
|
case <-s.Shutdown:
|
|
// Need to stop the recapping process.
|
|
s.stopRecapping()
|
|
close(s.Done)
|
|
default:
|
|
}
|
|
} else {
|
|
// Need to remove the task from the window
|
|
s.capper.TaskFinished(*status.TaskId.Value)
|
|
// Determining the new cluster wide cap.
|
|
//tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
|
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
|
|
|
if err == nil {
|
|
// If new determined cap value is different from the current recap value then we need to recap.
|
|
if int(math.Floor(tempCap+0.5)) != int(math.Floor(rankedRecapValue+0.5)) {
|
|
rankedRecapValue = tempCap
|
|
rankedMutex.Lock()
|
|
s.isRecapping = true
|
|
rankedMutex.Unlock()
|
|
log.Printf("Determined re-cap value: %f\n", rankedRecapValue)
|
|
} else {
|
|
rankedMutex.Lock()
|
|
s.isRecapping = false
|
|
rankedMutex.Unlock()
|
|
}
|
|
} else {
|
|
// Not updating rankedCurrentCapValue
|
|
log.Println(err)
|
|
}
|
|
}
|
|
}
|
|
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
|
}
|