244 lines
8.6 KiB
Go
244 lines
8.6 KiB
Go
/*
|
|
Cluster wide dynamic capping
|
|
Step1. Compute running average of tasks in window.
|
|
Step2. Compute what percentage of available power of each node, is the running average.
|
|
Step3. Compute the median of the percentages and this is the percentage that the cluster needs to be cpaped at.
|
|
|
|
1. First Fit Scheduling -- Perform the above steps for each task that needs to be scheduled.
|
|
2. Rank based Scheduling -- Sort a set of tasks to be scheduled, in ascending order of power, and then perform the above steps for each of them in the sorted order.
|
|
|
|
This is not a scheduler but a scheduling scheme that schedulers can use.
|
|
*/
|
|
package schedulers
|
|
|
|
import (
|
|
"bitbucket.org/sunybingcloud/electron/constants"
|
|
"bitbucket.org/sunybingcloud/electron/def"
|
|
"container/list"
|
|
"errors"
|
|
"github.com/montanaflynn/stats"
|
|
"sort"
|
|
"sync"
|
|
)
|
|
|
|
// Structure containing utility data structures used to compute cluster-wide dynamic cap.
|
|
type clusterwideCapper struct {
|
|
// window of tasks.
|
|
window_of_tasks list.List
|
|
// The current sum of requested powers of the tasks in the window.
|
|
current_sum float64
|
|
// The current number of tasks in the window.
|
|
number_of_tasks_in_window int
|
|
}
|
|
|
|
// Defining constructor for clusterwideCapper. Please don't call this directly and instead use getClusterwideCapperInstance().
|
|
func newClusterwideCapper() *clusterwideCapper {
|
|
return &clusterwideCapper{current_sum: 0.0, number_of_tasks_in_window: 0}
|
|
}
|
|
|
|
// For locking on operations that may result in race conditions.
|
|
var clusterwide_capper_mutex sync.Mutex
|
|
|
|
// Singleton instance of clusterwideCapper
|
|
var singleton_capper *clusterwideCapper
|
|
// Retrieve the singleton instance of clusterwideCapper.
|
|
func getClusterwideCapperInstance() *clusterwideCapper {
|
|
if singleton_capper == nil {
|
|
clusterwide_capper_mutex.Lock()
|
|
singleton_capper = newClusterwideCapper()
|
|
clusterwide_capper_mutex.Unlock()
|
|
} else {
|
|
// Do nothing
|
|
}
|
|
return singleton_capper
|
|
}
|
|
|
|
// Clear and initialize all the members of clusterwideCapper.
|
|
func (capper clusterwideCapper) clear() {
|
|
capper.window_of_tasks.Init()
|
|
capper.current_sum = 0
|
|
capper.number_of_tasks_in_window = 0
|
|
}
|
|
|
|
// Compute the average of watts of all the tasks in the window.
|
|
func (capper clusterwideCapper) average() float64 {
|
|
return capper.current_sum / float64(capper.window_of_tasks.Len())
|
|
}
|
|
|
|
/*
|
|
Compute the running average.
|
|
|
|
Using clusterwideCapper#window_of_tasks to store the tasks.
|
|
Task at position 0 (oldest task) is removed when the window is full and new task arrives.
|
|
*/
|
|
func (capper clusterwideCapper) running_average_of_watts(tsk *def.Task) float64 {
|
|
var average float64
|
|
if capper.number_of_tasks_in_window < constants.Window_size {
|
|
capper.window_of_tasks.PushBack(tsk)
|
|
capper.number_of_tasks_in_window++
|
|
capper.current_sum += float64(tsk.Watts)
|
|
} else {
|
|
task_to_remove_element := capper.window_of_tasks.Front()
|
|
if task_to_remove, ok := task_to_remove_element.Value.(*def.Task); ok {
|
|
capper.current_sum -= float64(task_to_remove.Watts)
|
|
capper.window_of_tasks.Remove(task_to_remove_element)
|
|
}
|
|
capper.window_of_tasks.PushBack(tsk)
|
|
capper.current_sum += float64(tsk.Watts)
|
|
}
|
|
average = capper.average()
|
|
return average
|
|
}
|
|
|
|
/*
|
|
Calculating cap value.
|
|
|
|
1. Sorting the values of running_average_available_power_percentage in ascending order.
|
|
2. Computing the median of the above sorted values.
|
|
3. The median is now the cap value.
|
|
*/
|
|
func (capper clusterwideCapper) get_cap(running_average_available_power_percentage map[string]float64) float64 {
|
|
var values []float64
|
|
// Validation
|
|
if running_average_available_power_percentage == nil {
|
|
return 100.0
|
|
}
|
|
for _, apower := range running_average_available_power_percentage {
|
|
values = append(values, apower)
|
|
}
|
|
// sorting the values in ascending order
|
|
sort.Float64s(values)
|
|
// Calculating the median
|
|
if median, err := stats.Median(values); err == nil {
|
|
return median
|
|
}
|
|
// should never reach here. If here, then just setting the cap value to be 100
|
|
return 100.0
|
|
}
|
|
|
|
/* Quick sort algorithm to sort tasks, in place,
|
|
in ascending order of power.*/
|
|
func (capper clusterwideCapper) quick_sort(low int, high int, tasks_to_sort []*def.Task) {
|
|
i := low
|
|
j := high
|
|
// calculating the pivot
|
|
pivot_index := low + (high - low)/2
|
|
pivot := tasks_to_sort[pivot_index]
|
|
for i <= j {
|
|
for tasks_to_sort[i].Watts < pivot.Watts {
|
|
i++
|
|
}
|
|
for tasks_to_sort[j].Watts > pivot.Watts {
|
|
j--
|
|
}
|
|
if i <= j {
|
|
temp := tasks_to_sort[i]
|
|
tasks_to_sort[i] = tasks_to_sort[j]
|
|
tasks_to_sort[j] = temp
|
|
i++
|
|
j--
|
|
}
|
|
}
|
|
if low < j {
|
|
capper.quick_sort(low, j, tasks_to_sort)
|
|
}
|
|
if i < high {
|
|
capper.quick_sort(i, high, tasks_to_sort)
|
|
}
|
|
}
|
|
|
|
// Sorting tasks in ascending order of requested watts.
|
|
func (capper clusterwideCapper) sort_tasks(tasks_to_sort []*def.Task) {
|
|
capper.quick_sort(0, len(tasks_to_sort)-1, tasks_to_sort)
|
|
}
|
|
|
|
/*
|
|
Remove entry for finished task.
|
|
This function is called when a task completes. This completed task needs to be removed from the window of tasks (if it is still present)
|
|
so that it doesn't contribute to the computation of the cap value.
|
|
*/
|
|
func (capper clusterwideCapper) taskFinished(taskID string) {
|
|
// If the window is empty the just return. This condition should technically return false.
|
|
if capper.window_of_tasks.Len() == 0 {
|
|
return
|
|
}
|
|
|
|
// Checking whether the task with the given taskID is currently present in the window of tasks.
|
|
var task_element_to_remove *list.Element
|
|
for task_element := capper.window_of_tasks.Front(); task_element != nil; task_element = task_element.Next() {
|
|
if tsk, ok := task_element.Value.(*def.Task); ok {
|
|
if tsk.TaskID == taskID {
|
|
task_element_to_remove = task_element
|
|
}
|
|
}
|
|
}
|
|
|
|
// If finished task is there in the window of tasks, then we need to remove the task from the same and modify the members of clusterwideCapper accordingly.
|
|
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
|
capper.window_of_tasks.Remove(task_element_to_remove)
|
|
capper.number_of_tasks_in_window -= 1
|
|
capper.current_sum -= float64(task_to_remove.Watts)
|
|
}
|
|
}
|
|
|
|
// Ranked based scheduling.
|
|
func (capper clusterwideCapper) rankedDetermineCap(available_power map[string]float64,
|
|
tasks_to_schedule []*def.Task) ([]*def.Task, map[int]float64, error) {
|
|
// Validation
|
|
if available_power == nil || len(tasks_to_schedule) == 0 {
|
|
return nil, nil, errors.New("Invalid argument: available_power, tasks_to_schedule")
|
|
} else {
|
|
// Need to sort the tasks in ascending order of requested power.
|
|
capper.sort_tasks(tasks_to_schedule)
|
|
|
|
// Now, for each task in the sorted set of tasks, we need to use the Fcfs_determine_cap logic.
|
|
cluster_wide_cap_values := make(map[int]float64)
|
|
index := 0
|
|
for _, tsk := range tasks_to_schedule {
|
|
/*
|
|
Note that even though Fcfs_determine_cap is called, we have sorted the tasks aprior and thus, the tasks are scheduled in the sorted fashion.
|
|
Calling Fcfs_determine_cap(...) just to avoid redundant code.
|
|
*/
|
|
if cap, err := capper.fcfsDetermineCap(available_power, tsk); err == nil {
|
|
cluster_wide_cap_values[index] = cap
|
|
} else {
|
|
return nil, nil, err
|
|
}
|
|
index++
|
|
}
|
|
// Now returning the sorted set of tasks and the cluster wide cap values for each task that is launched.
|
|
return tasks_to_schedule, cluster_wide_cap_values, nil
|
|
}
|
|
}
|
|
|
|
// First come first serve shceduling.
|
|
func (capper clusterwideCapper) fcfsDetermineCap(available_power map[string]float64, new_task *def.Task) (float64, error) {
|
|
// Validation
|
|
if available_power == nil {
|
|
return 100, errors.New("Invalid argument: available_power")
|
|
} else {
|
|
clusterwide_capper_mutex.Lock()
|
|
// Need to calculate the running average
|
|
running_average := capper.running_average_of_watts(new_task)
|
|
// What percent of available_power for each node is the running average.
|
|
running_average_available_power_percentage := make(map[string]float64)
|
|
for host, apower := range available_power {
|
|
if apower >= running_average {
|
|
running_average_available_power_percentage[host] = (running_average/apower) * 100
|
|
} else {
|
|
// We don't consider this host in the offers.
|
|
}
|
|
}
|
|
|
|
// Determine the cluster wide cap value.
|
|
cap_value := capper.get_cap(running_average_available_power_percentage)
|
|
// Need to cap the cluster to this value before launching the next task.
|
|
clusterwide_capper_mutex.Unlock()
|
|
return cap_value, nil
|
|
}
|
|
}
|
|
|
|
// Stringer for an instance of clusterwideCapper
|
|
func (capper clusterwideCapper) string() string {
|
|
return "Clusterwide Capper -- Proactively cap the entire cluster."
|
|
}
|