Merged in bpswClassToWattsCapping (pull request #6)

Bpswclasstowattscapping
This commit is contained in:
Renan DelValle 2017-01-09 00:43:10 -05:00
commit 0c6d7f670e
8 changed files with 914 additions and 22 deletions

View file

@ -99,7 +99,7 @@ func (capper ClusterwideCapper) CleverRecap(totalPower map[string]float64,
// determining the Recap value by calling the regular Recap(...)
toggle := false
RecapValue, err := capper.Recap(totalPower, taskMonitor, finishedTaskId)
RecapValue, err := capper.NaiveRecap(totalPower, taskMonitor, finishedTaskId)
if err == nil {
toggle = true
}
@ -181,7 +181,7 @@ Recapping the entire cluster.
This needs to be called whenever a task finishes execution.
*/
func (capper ClusterwideCapper) Recap(totalPower map[string]float64,
func (capper ClusterwideCapper) NaiveRecap(totalPower map[string]float64,
taskMonitor map[string][]def.Task, finishedTaskId string) (float64, error) {
// Validation
if totalPower == nil || taskMonitor == nil {

View file

@ -7,6 +7,7 @@ To Do:
* Fix the race condition on 'tasksRunning' in proactiveclusterwidecappingfcfs.go and proactiveclusterwidecappingranked.go
* Separate the capping strategies from the scheduling algorithms and make it possible to use any capping strategy with any scheduler.
* Make newTask(...) variadic where the newTaskClass argument can either be given or not. If not give, then pick task.Watts as the watts attribute, else pick task.ClassToWatts[newTaskClass].
* Retrofit pcp/proactiveclusterwidecappers.go to include the power capping go routines and to cap only when necessary.
Scheduling Algorithms:

View file

@ -0,0 +1,427 @@
package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/rapl"
"errors"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sort"
"strings"
"sync"
"time"
)
// Decides if to take an offer or not
func (s *BPMaxMinPistonCapping) takeOffer(offer *mesos.Offer, task def.Task) bool {
cpus, mem, watts := OfferAgg(offer)
//TODO: Insert watts calculation here instead of taking them as a parameter
if cpus >= task.CPU && mem >= task.RAM && watts >= task.Watts {
return true
}
return false
}
type BPMaxMinPistonCapping struct {
base //Type embedding to inherit common functions
tasksCreated int
tasksRunning int
tasks []def.Task
metrics map[string]def.Metric
running map[string]map[string]bool
taskMonitor map[string][]def.Task
totalPower map[string]float64
ignoreWatts bool
ticker *time.Ticker
isCapping bool
// First set of PCP values are garbage values, signal to logger to start recording when we're
// about to schedule a new task
RecordPCP bool
// This channel is closed when the program receives an interrupt,
// signalling that the program should shut down.
Shutdown chan struct{}
// This channel is closed after shutdown is closed, and only when all
// outstanding tasks have been cleaned up
Done chan struct{}
// Controls when to shutdown pcp logging
PCPLog chan struct{}
schedTrace *log.Logger
}
// New electron scheduler
func NewBPMaxMinPistonCapping(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPMaxMinPistonCapping {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPMaxMinPistonCapping{
tasks: tasks,
ignoreWatts: ignoreWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
taskMonitor: make(map[string][]def.Task),
totalPower: make(map[string]float64),
RecordPCP: false,
ticker: time.NewTicker(5 * time.Second),
isCapping: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
}
return s
}
func (s *BPMaxMinPistonCapping) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
// Start recording only when we're creating the first task
if !s.RecordPCP {
// Turn on logging
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Add task to list of tasks running on node
s.running[offer.GetSlaveId().GoString()][taskName] = true
// Setting the task ID to the task. This is done so that we can consider each task to be different
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to list of tasks running on node
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if !s.ignoreWatts {
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
func (s *BPMaxMinPistonCapping) Disconnected(sched.SchedulerDriver) {
// Need to stop the capping process
s.ticker.Stop()
bpMaxMinPistonCappingMutex.Lock()
s.isCapping = false
bpMaxMinPistonCappingMutex.Unlock()
log.Println("Framework disconnected with master")
}
// mutex
var bpMaxMinPistonCappingMutex sync.Mutex
// go routine to cap each node in the cluster at regular intervals of time
var bpMaxMinPistonCappingCapValues = make(map[string]float64)
// Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead)
var bpMaxMinPistonCappingPreviousRoundedCapValues = make(map[string]int)
func (s *BPMaxMinPistonCapping) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap each node
bpMaxMinPistonCappingMutex.Lock()
for host, capValue := range bpMaxMinPistonCappingCapValues {
roundedCapValue := int(math.Floor(capValue + 0.5))
// has the cap value changed
if previousRoundedCap, ok := bpMaxMinPistonCappingPreviousRoundedCapValues[host]; ok {
if previousRoundedCap != roundedCapValue {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue)))
}
bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue
}
} else {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5)))
}
bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue
}
}
bpMaxMinPistonCappingMutex.Unlock()
}
}
}()
}
// Stop the capping
func (s *BPMaxMinPistonCapping) stopCapping() {
if s.isCapping {
log.Println("Stopping the capping.")
s.ticker.Stop()
bpMaxMinPistonCappingMutex.Lock()
s.isCapping = false
bpMaxMinPistonCappingMutex.Unlock()
}
}
// Determine if the remaining sapce inside of the offer is enough for
// the task we need to create. If it is, create a TaskInfo and return it.
func (s *BPMaxMinPistonCapping) CheckFit(i int,
task def.Task,
offer *mesos.Offer,
totalCPU *float64,
totalRAM *float64,
totalWatts *float64,
partialLoad *float64) (bool, *mesos.TaskInfo) {
offerCPU, offerRAM, offerWatts := OfferAgg(offer)
// Does the task fit
if (s.ignoreWatts || (offerWatts >= (*totalWatts + task.Watts))) &&
(offerCPU >= (*totalCPU + task.CPU)) &&
(offerRAM >= (*totalRAM + task.RAM)) {
// Start piston capping if haven't started yet
if !s.isCapping {
s.isCapping = true
s.startCapping()
}
*totalWatts += task.Watts
*totalCPU += task.CPU
*totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
*partialLoad += ((task.Watts * constants.CapMargin) / s.totalPower[*offer.Hostname]) * 100
if *task.Instances <= 0 {
// All instances of task have been scheduled, remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) <= 0 {
log.Println("Done scheduling all tasks")
close(s.Shutdown)
}
}
return true, taskToSchedule
}
return false, nil
}
func (s *BPMaxMinPistonCapping) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
for _, offer := range offers {
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, longFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
tasks := []*mesos.TaskInfo{}
offerTaken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
// Store the partialLoad for host corresponding to this offer
// Once we can't fit any more tasks, we update the capValue for this host using partialLoad and then launch the fit tasks.
partialLoad := 0.0
// Assumes s.tasks is ordered in non-decreasing median max peak order
// Attempt to schedule a single instance of the heaviest workload available first
// Start from the back until one fits
for i := len(s.tasks) - 1; i >= 0; i-- {
task := s.tasks[i]
// Check host if it exists
if task.Host != "" {
// Don't take offer if it doesn't match our task's host requirement
if !strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts, &partialLoad)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
break
}
}
// Pack the rest of the offer with the smallest tasks
for i, task := range s.tasks {
// Check host if it exists
if task.Host != "" {
// Don't take offer if it doesn't match our task's host requirement
if !strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
for *task.Instances > 0 {
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts, &partialLoad)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
} else {
break // Continue on to next task
}
}
}
if offerTaken {
// Updating the cap value for offer.Hostname
bpMaxMinPistonCappingMutex.Lock()
bpMaxMinPistonCappingCapValues[*offer.Hostname] += partialLoad
bpMaxMinPistonCappingMutex.Unlock()
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, defaultFilter)
} else {
// If there was no match for the task
fmt.Println("There is not enough resources to launch a task:")
cpus, mem, watts := OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, defaultFilter)
}
}
}
// Remove finished task from the taskMonitor
func (s *BPMaxMinPistonCapping) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) {
hostOfFinishedTask := ""
indexOfFinishedTask := -1
found := false
var finishedTask def.Task
for host, tasks := range s.taskMonitor {
for i, task := range tasks {
if task.TaskID == finishedTaskID {
hostOfFinishedTask = host
indexOfFinishedTask = i
found = true
}
}
if found {
break
}
}
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask]
log.Printf("Removing task with TaskID [%s] from the list of running tasks\n",
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
} else {
return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor")
}
return finishedTask, hostOfFinishedTask, nil
}
func (s *BPMaxMinPistonCapping) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
bpMaxMinPistonCappingMutex.Lock()
s.tasksRunning++
bpMaxMinPistonCappingMutex.Unlock()
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Deleting the task from the taskMonitor
finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value)
if err != nil {
log.Println(err)
}
// Need to update the cap values for host of the finishedTask
bpMaxMinPistonCappingMutex.Lock()
bpMaxMinPistonCappingCapValues[hostOfFinishedTask] -= ((finishedTask.Watts * constants.CapMargin) / s.totalPower[hostOfFinishedTask]) * 100
// Checking to see if the cap value has become 0, in which case we uncap the host.
if int(math.Floor(bpMaxMinPistonCappingCapValues[hostOfFinishedTask]+0.5)) == 0 {
bpMaxMinPistonCappingCapValues[hostOfFinishedTask] = 100
}
s.tasksRunning--
bpMaxMinPistonCappingMutex.Unlock()
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
s.stopCapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}

View file

@ -0,0 +1,447 @@
package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/pcp"
"bitbucket.org/sunybingcloud/electron/rapl"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sort"
"strings"
"sync"
"time"
)
// Decides if to take an offer or not
func (s *BPMaxMinProacCC) takeOffer(offer *mesos.Offer, task def.Task) bool {
cpus, mem, watts := OfferAgg(offer)
//TODO: Insert watts calculation here instead of taking them as a parameter
if cpus >= task.CPU && mem >= task.RAM && watts >= task.Watts {
return true
}
return false
}
type BPMaxMinProacCC struct {
base // Type embedding to inherit common functions
tasksCreated int
tasksRunning int
tasks []def.Task
metrics map[string]def.Metric
running map[string]map[string]bool
taskMonitor map[string][]def.Task
availablePower map[string]float64
totalPower map[string]float64
ignoreWatts bool
capper *pcp.ClusterwideCapper
ticker *time.Ticker
recapTicker *time.Ticker
isCapping bool // indicate whether we are currently performing cluster-wide capping.
isRecapping bool // indicate whether we are currently performing cluster-wide recapping.
// First set of PCP values are garbage values, signal to logger to start recording when we're
// about to schedule a new task
RecordPCP bool
// This channel is closed when the program receives an interrupt,
// signalling that the program should shut down
Shutdown chan struct{}
// This channel is closed after shutdown is closed, and only when all
// outstanding tasks have been cleaned up
Done chan struct{}
// Controls when to shutdown pcp logging
PCPLog chan struct{}
schedTrace *log.Logger
}
// New electron scheduler
func NewBPMaxMinProacCC(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPMaxMinProacCC {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPMaxMinProacCC{
tasks: tasks,
ignoreWatts: ignoreWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
taskMonitor: make(map[string][]def.Task),
availablePower: make(map[string]float64),
totalPower: make(map[string]float64),
RecordPCP: false,
capper: pcp.GetClusterwideCapperInstance(),
ticker: time.NewTicker(10 * time.Second),
recapTicker: time.NewTicker(20 * time.Second),
isCapping: false,
isRecapping: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
}
return s
}
// mutex
var bpMaxMinProacCCMutex sync.Mutex
func (s *BPMaxMinProacCC) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
if !s.RecordPCP {
// Turn on logging.
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Setting the task ID to the task. This is done so that we can consider each task to be different,
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to the list of tasks running on the node.
s.running[offer.GetSlaveId().GoString()][taskName] = true
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if !s.ignoreWatts {
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
// go routine to cap the entire cluster in regular intervals of time.
var bpMaxMinProacCCCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
var bpMaxMinProacCCNewCapValue = 0.0 // newly computed cap value
func (s *BPMaxMinProacCC) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap the cluster only if new cap value different from old cap value.
// This way we don't unnecessarily cap the cluster.
bpMaxMinProacCCMutex.Lock()
if s.isCapping {
if int(math.Floor(bpMaxMinProacCCNewCapValue+0.5)) != int(math.Floor(bpMaxMinProacCCCapValue+0.5)) {
// updating cap value
bpMaxMinProacCCCapValue = bpMaxMinProacCCNewCapValue
if bpMaxMinProacCCCapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding cap value to nearest int
if err := rapl.Cap(host, "rapl", int(math.Floor(bpMaxMinProacCCCapValue+0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCCapValue+0.5)))
}
}
}
bpMaxMinProacCCMutex.Unlock()
}
}
}()
}
// go routine to recap the entire cluster in regular intervals of time.
var bpMaxMinProacCCRecapValue = 0.0 // The cluster-wide cap value when recapping.
func (s *BPMaxMinProacCC) startRecapping() {
go func() {
for {
select {
case <-s.recapTicker.C:
bpMaxMinProacCCMutex.Lock()
// If stopped performing cluster-wide capping, then we need to recap.
if s.isRecapping && bpMaxMinProacCCRecapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding the recap value to the nearest int
if err := rapl.Cap(host, "rapl", int(math.Floor(bpMaxMinProacCCRecapValue+0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Capped the cluster to %d", int(math.Floor(bpMaxMinProacCCRecapValue+0.5)))
}
// Setting the recapping to false
s.isRecapping = false
bpMaxMinProacCCMutex.Unlock()
}
}
}()
}
// Stop cluster-wide capping
func (s *BPMaxMinProacCC) stopCapping() {
if s.isCapping {
log.Println("Stopping the cluster-wide capping.")
s.ticker.Stop()
bpMaxMinProacCCMutex.Lock()
s.isCapping = false
s.isRecapping = true
bpMaxMinProacCCMutex.Unlock()
}
}
// Stop the cluster-wide recapping
func (s *BPMaxMinProacCC) stopRecapping() {
// If not capping, then definitely recapping.
if !s.isCapping && s.isRecapping {
log.Println("Stopping the cluster-wide re-capping.")
s.recapTicker.Stop()
bpMaxMinProacCCMutex.Lock()
s.isRecapping = false
bpMaxMinProacCCMutex.Unlock()
}
}
// Determine if the remaining space inside of the offer is enough for
// the task we need to create. If it is, create TaskInfo and return it.
func (s *BPMaxMinProacCC) CheckFit(i int,
task def.Task,
offer *mesos.Offer,
totalCPU *float64,
totalRAM *float64,
totalWatts *float64) (bool, *mesos.TaskInfo) {
offerCPU, offerRAM, offerWatts := OfferAgg(offer)
// Does the task fit
if (s.ignoreWatts || (offerWatts >= (*totalWatts + task.Watts))) &&
(offerCPU >= (*totalCPU + task.CPU)) &&
(offerRAM >= (*totalRAM + task.RAM)) {
// Capping the cluster if haven't yet started
if !s.isCapping {
bpMaxMinProacCCMutex.Lock()
s.isCapping = true
bpMaxMinProacCCMutex.Unlock()
s.startCapping()
}
tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task)
if err == nil {
bpMaxMinProacCCMutex.Lock()
bpMaxMinProacCCNewCapValue = tempCap
bpMaxMinProacCCMutex.Unlock()
} else {
log.Println("Failed to determine new cluster-wide cap:")
log.Println(err)
}
*totalWatts += task.Watts
*totalCPU += task.CPU
*totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
if *task.Instances <= 0 {
// All instances of task have been scheduled, remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) <= 0 {
log.Println("Done scheduling all tasks")
// Need to stop the cluster wide capping
s.stopCapping()
s.startRecapping() // Load changes after every task finishes and hence, we need to change the capping of the cluster.
close(s.Shutdown)
}
}
return true, taskToSchedule
}
return false, nil
}
func (s *BPMaxMinProacCC) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
// retrieving the available power for all the hosts in the offers.
for _, offer := range offers {
_, _, offerWatts := OfferAgg(offer)
s.availablePower[*offer.Hostname] = offerWatts
// setting total power if the first time
if _, ok := s.totalPower[*offer.Hostname]; !ok {
s.totalPower[*offer.Hostname] = offerWatts
}
}
for host, tpower := range s.totalPower {
log.Printf("TotalPower[%s] = %f", host, tpower)
}
for _, offer := range offers {
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, longFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
tasks := []*mesos.TaskInfo{}
offerTaken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
// Assumes s.tasks is ordered in non-decreasing median max peak order
// Attempt to schedule a single instance of the heaviest workload available first
// Start from the back until one fits
for i := len(s.tasks) - 1; i >= 0; i-- {
task := s.tasks[i]
// Check host if it exists
if task.Host != "" {
// Don't take offer if it doesn't match our task's host requirement
if !strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
break
}
}
// Pack the rest of the offer with the smallest tasks
for i, task := range s.tasks {
// Check host if it exists
if task.Host != "" {
// Don't take offer if it doesn't match our task's host requirement
if !strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
for *task.Instances > 0 {
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, offer, &totalCPU, &totalRAM, &totalWatts)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
} else {
break // Continue on to next task
}
}
}
if offerTaken {
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, defaultFilter)
} else {
// If there was no match for the task
fmt.Println("There is not enough resources to launch a task:")
cpus, mem, watts := OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, defaultFilter)
}
}
}
func (s *BPMaxMinProacCC) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
s.tasksRunning++
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Need to remove the task from the window
s.capper.TaskFinished(*status.TaskId.Value)
// Determining the new cluster wide recap value
tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
//tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
if err == nil {
// If new determined recap value is different from the current recap value, then we need to recap.
if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpMaxMinProacCCRecapValue+0.5)) {
bpMaxMinProacCCRecapValue = tempCap
bpMaxMinProacCCMutex.Lock()
s.isRecapping = true
bpMaxMinProacCCMutex.Unlock()
log.Printf("Determined re-cap value: %f\n", bpMaxMinProacCCRecapValue)
} else {
bpMaxMinProacCCMutex.Lock()
s.isRecapping = false
bpMaxMinProacCCMutex.Unlock()
}
} else {
log.Println(err)
}
s.tasksRunning--
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
// Need to stop the cluster-wide recapping
s.stopRecapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}

View file

@ -104,6 +104,9 @@ func (s *BPSWClassMapWattsPistonCapping) newTask(offer *mesos.Offer, task def.Ta
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Add task to list of tasks running on node
s.running[offer.GetSlaveId().GoString()][taskName] = true
// Setting the task ID to the task. This is done so that we can consider each task to be different
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
@ -155,7 +158,7 @@ func (s *BPSWClassMapWattsPistonCapping) Disconnected(sched.SchedulerDriver) {
// mutex
var bpswClassMapWattsPistonMutex sync.Mutex
// go routine to cap eahc node in the cluster at regular intervals of time
// go routine to cap each node in the cluster at regular intervals of time
var bpswClassMapWattsPistonCapValues = make(map[string]float64)
// Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead)
@ -268,6 +271,12 @@ func (s *BPSWClassMapWattsPistonCapping) ResourceOffers(driver sched.SchedulerDr
(offerCPU >= (totalCPU + task.CPU)) &&
(offerRAM >= (totalRAM + task.RAM)) {
// Start piston capping if haven't started yet
if !s.isCapping {
s.isCapping = true
s.startCapping()
}
fmt.Println("Watts being used: ", task.ClassToWatts[nodeClass])
taken = true
totalWatts += task.ClassToWatts[nodeClass]

View file

@ -165,22 +165,30 @@ func (s *BPSWClassMapWattsProacCC) Disconnected(sched.SchedulerDriver) {
}
// go routine to cap the entire cluster in regular intervals of time.
var bpswClassMapWattsCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
var bpswClassMapWattsProacCCCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
var bpswClassMapWattsProacCCNewCapValue = 0.0 // newly computed cap value
func (s *BPSWClassMapWattsProacCC) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap the cluster to the bpswClassMapWattsCapValue.
// Need to cap the cluster only if new cap value different from old cap value.
// This way we don't unnecessarily cap the cluster.
bpswClassMapWattsProacCCMutex.Lock()
if bpswClassMapWattsCapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding capValue to nearest int.
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsCapValue+0.5))); err != nil {
log.Println(err)
if s.isCapping {
if int(math.Floor(bpswClassMapWattsProacCCNewCapValue+0.5)) != int(math.Floor(bpswClassMapWattsProacCCCapValue+0.5)) {
// updating cap value
bpswClassMapWattsProacCCCapValue = bpswClassMapWattsProacCCNewCapValue
if bpswClassMapWattsProacCCCapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding cap value to nearest int
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsProacCCCapValue+0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Capped the cluster to %d", int(math.Floor(bpswClassMapWattsProacCCCapValue+0.5)))
}
}
log.Printf("Capped the cluster to %d", int(math.Floor(bpswClassMapWattsCapValue+0.5)))
}
bpswClassMapWattsProacCCMutex.Unlock()
}
@ -189,7 +197,7 @@ func (s *BPSWClassMapWattsProacCC) startCapping() {
}
// go routine to recap the entire cluster in regular intervals of time.
var bpswClassMapWattsRecapValue = 0.0 // The cluster-wide cap value when recapping
var bpswClassMapWattsProacCCRecapValue = 0.0 // The cluster-wide cap value when recapping
func (s *BPSWClassMapWattsProacCC) startRecapping() {
go func() {
for {
@ -197,14 +205,14 @@ func (s *BPSWClassMapWattsProacCC) startRecapping() {
case <-s.recapTicker.C:
bpswClassMapWattsProacCCMutex.Lock()
// If stopped performing cluster wide capping, then we need to recap
if s.isRecapping && bpswClassMapWattsRecapValue > 0.0 {
if s.isRecapping && bpswClassMapWattsProacCCRecapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding capValue to the nearest int
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsRecapValue+0.5))); err != nil {
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsProacCCRecapValue +0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Recapping the cluster to %d", int(math.Floor(bpswClassMapWattsRecapValue+0.5)))
log.Printf("Recapping the cluster to %d", int(math.Floor(bpswClassMapWattsProacCCRecapValue +0.5)))
}
// Setting recapping to false
s.isRecapping = false
@ -309,7 +317,7 @@ func (s *BPSWClassMapWattsProacCC) ResourceOffers(driver sched.SchedulerDriver,
tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task)
if err == nil {
bpswClassMapWattsProacCCMutex.Lock()
bpswClassMapWattsCapValue = tempCap
bpswClassMapWattsProacCCNewCapValue = tempCap
bpswClassMapWattsProacCCMutex.Unlock()
} else {
log.Println("Failed to determine new cluster-wide cap:")
@ -370,16 +378,16 @@ func (s *BPSWClassMapWattsProacCC) StatusUpdate(driver sched.SchedulerDriver, st
// Need to remove the task from the window
s.capper.TaskFinished(*status.TaskId.Value)
// Determining the new cluster wide recap value
//tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
//tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
if err == nil {
// If new determined cap value is different from the current recap value, then we need to recap
if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpswClassMapWattsRecapValue+0.5)) {
bpswClassMapWattsRecapValue = tempCap
if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpswClassMapWattsProacCCRecapValue +0.5)) {
bpswClassMapWattsProacCCRecapValue = tempCap
bpswClassMapWattsProacCCMutex.Lock()
s.isRecapping = true
bpswClassMapWattsProacCCMutex.Unlock()
log.Printf("Determined re-cap value: %f\n", bpswClassMapWattsRecapValue)
log.Printf("Determined re-cap value: %f\n", bpswClassMapWattsProacCCRecapValue)
} else {
bpswClassMapWattsProacCCMutex.Lock()
s.isRecapping = false

View file

@ -348,7 +348,7 @@ func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver,
// Need to remove the task from the window of tasks.
s.capper.TaskFinished(*status.TaskId.Value)
// Determining the new cluster wide cap.
//tempCap, err := s.capper.Recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
//tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
if err == nil {
// if new determined cap value is different from the current recap value then we need to recap.

View file

@ -383,7 +383,7 @@ func (s *ProactiveClusterwideCapRanked) StatusUpdate(driver sched.SchedulerDrive
// Need to remove the task from the window
s.capper.TaskFinished(*status.TaskId.Value)
// Determining the new cluster wide cap.
//tempCap, err := s.capper.Recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
//tempCap, err := s.capper.NaiveRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
if err == nil {