Merged in bpswClassToWattsCapping (pull request #5)

Bpswclasstowattscapping
This commit is contained in:
Renan DelValle 2017-01-06 20:07:18 -05:00
commit 880a89c5cc
6 changed files with 810 additions and 47 deletions

View file

@ -68,7 +68,7 @@ func UpdateCapMargin(newCapMargin float64) bool {
var StarvationFactor = PowerThreshold / CapMargin
// Window size for running average
var WindowSize = 160
var WindowSize = 20
// Update the window size.
func UpdateWindowSize(newWindowSize int) bool {

View file

@ -58,7 +58,7 @@ func main() {
startTime := time.Now().Format("20060102150405")
logPrefix := *pcplogPrefix + "_" + startTime
scheduler := schedulers.NewBPMaxMinWatts(tasks, *ignoreWatts, logPrefix)
scheduler := schedulers.NewBPSWClassMapWatts(tasks, *ignoreWatts, logPrefix)
driver, err := sched.NewMesosSchedulerDriver(sched.DriverConfig{
Master: *master,
Framework: &mesos.FrameworkInfo{
@ -72,8 +72,8 @@ func main() {
return
}
go pcp.Start(scheduler.PCPLog, &scheduler.RecordPCP, logPrefix)
//go pcp.StartLogAndDynamicCap(scheduler.PCPLog, &scheduler.RecordPCP, logPrefix, *hiThreshold, *loThreshold)
//go pcp.Start(scheduler.PCPLog, &scheduler.RecordPCP, logPrefix)
go pcp.StartLogAndDynamicCap(scheduler.PCPLog, &scheduler.RecordPCP, logPrefix, *hiThreshold, *loThreshold)
time.Sleep(1 * time.Second) // Take a second between starting PCP log and continuing
// Attempt to handle signint to not leave pmdumptext running

View file

@ -6,6 +6,7 @@ To Do:
* Design changes -- Possible to have one scheduler with different scheduling schemes?
* Fix the race condition on 'tasksRunning' in proactiveclusterwidecappingfcfs.go and proactiveclusterwidecappingranked.go
* Separate the capping strategies from the scheduling algorithms and make it possible to use any capping strategy with any scheduler.
* Make newTask(...) variadic where the newTaskClass argument can either be given or not. If not give, then pick task.Watts as the watts attribute, else pick task.ClassToWatts[newTaskClass].
Scheduling Algorithms:

View file

@ -8,6 +8,7 @@ import (
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"os"
"sort"
"strings"
"time"
@ -28,6 +29,7 @@ func (*BPSWClassMapWatts) takeOffer(offer *mesos.Offer, task def.Task) bool {
}
type BPSWClassMapWatts struct {
base // Type embedded to inherit common functions
tasksCreated int
tasksRunning int
tasks []def.Task
@ -48,12 +50,19 @@ type BPSWClassMapWatts struct {
// Controls when to shutdown pcp logging
PCPLog chan struct{}
schedTrace *log.Logger
}
// New electron scheduler
func NewBPSWClassMapWatts(tasks []def.Task, ignoreWatts bool) *BPSWClassMapWatts {
func NewBPSWClassMapWatts(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPSWClassMapWatts {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPSWClassMapWatts{
tasks: tasks,
ignoreWatts: ignoreWatts,
@ -62,11 +71,12 @@ func NewBPSWClassMapWatts(tasks []def.Task, ignoreWatts bool) *BPSWClassMapWatts
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
RecordPCP: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
}
return s
}
func (s *BPSWClassMapWatts) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
func (s *BPSWClassMapWatts) newTask(offer *mesos.Offer, task def.Task, newTaskClass string) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
@ -90,7 +100,7 @@ func (s *BPSWClassMapWatts) newTask(offer *mesos.Offer, task def.Task) *mesos.Ta
}
if !s.ignoreWatts {
resources = append(resources, mesosutil.NewScalarResource("watts", task.Watts))
resources = append(resources, mesosutil.NewScalarResource("watts", task.ClassToWatts[newTaskClass]))
}
return &mesos.TaskInfo{
@ -113,21 +123,6 @@ func (s *BPSWClassMapWatts) newTask(offer *mesos.Offer, task def.Task) *mesos.Ta
}
}
func (s *BPSWClassMapWatts) Registered(
_ sched.SchedulerDriver,
frameworkID *mesos.FrameworkID,
masterInfo *mesos.MasterInfo) {
log.Printf("Framework %s registered with master %s", frameworkID, masterInfo)
}
func (s *BPSWClassMapWatts) Reregistered(_ sched.SchedulerDriver, masterInfo *mesos.MasterInfo) {
log.Printf("Framework re-registered with master %s", masterInfo)
}
func (s *BPSWClassMapWatts) Disconnected(sched.SchedulerDriver) {
log.Println("Framework disconnected with master")
}
func (s *BPSWClassMapWatts) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
@ -181,9 +176,11 @@ func (s *BPSWClassMapWatts) ResourceOffers(driver sched.SchedulerDriver, offers
totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
tasks = append(tasks, s.newTask(offer, task))
taskToSchedule := s.newTask(offer, task, nodeClass)
tasks = append(tasks, taskToSchedule)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
if *task.Instances <= 0 {
@ -234,27 +231,3 @@ func (s *BPSWClassMapWatts) StatusUpdate(driver sched.SchedulerDriver, status *m
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}
func (s *BPSWClassMapWatts) FrameworkMessage(
driver sched.SchedulerDriver,
executorID *mesos.ExecutorID,
slaveID *mesos.SlaveID,
message string) {
log.Println("Getting a framework message: ", message)
log.Printf("Received a framework message from some unknown source: %s", *executorID.Value)
}
func (s *BPSWClassMapWatts) OfferRescinded(_ sched.SchedulerDriver, offerID *mesos.OfferID) {
log.Printf("Offer %s rescinded", offerID)
}
func (s *BPSWClassMapWatts) SlaveLost(_ sched.SchedulerDriver, slaveID *mesos.SlaveID) {
log.Printf("Slave %s lost", slaveID)
}
func (s *BPSWClassMapWatts) ExecutorLost(_ sched.SchedulerDriver, executorID *mesos.ExecutorID, slaveID *mesos.SlaveID, status int) {
log.Printf("Executor %s on slave %s was lost", executorID, slaveID)
}
func (s *BPSWClassMapWatts) Error(_ sched.SchedulerDriver, err string) {
log.Printf("Receiving an error: %s", err)
}

View file

@ -0,0 +1,385 @@
package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/rapl"
"errors"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sort"
"strings"
"sync"
"time"
)
// Decides if to take offer or not
func (s *BPSWClassMapWattsPistonCapping) takeOffer(offer *mesos.Offer, task def.Task) bool {
cpus, mem, watts := OfferAgg(offer)
//TODO: Insert watts calculation here instead of taking them as a parameter
if cpus >= task.CPU && mem >= task.RAM && watts >= task.Watts {
return true
}
return false
}
type BPSWClassMapWattsPistonCapping struct {
base // Type embedded to inherit common functions
tasksCreated int
tasksRunning int
tasks []def.Task
metrics map[string]def.Metric
running map[string]map[string]bool
taskMonitor map[string][]def.Task
totalPower map[string]float64
ignoreWatts bool
ticker *time.Ticker
isCapping bool
// First set of PCP values are garbage values, signal to logger to start recording when we're
// about to schedule the new task
RecordPCP bool
// This channel is closed when the program receives an interrupt,
// signalling that program should shutdown
Shutdown chan struct{}
// This channel is closed after shutdown is closed, and only when all
// outstanding tasks have been cleaned up
Done chan struct{}
// Controls when to shutdown pcp logging
PCPLog chan struct{}
schedTrace *log.Logger
}
// New electron scheduler
func NewBPSWClassMapWattsPistonCapping(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPSWClassMapWattsPistonCapping {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPSWClassMapWattsPistonCapping{
tasks: tasks,
ignoreWatts: ignoreWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
taskMonitor: make(map[string][]def.Task),
totalPower: make(map[string]float64),
RecordPCP: false,
ticker: time.NewTicker(5 * time.Second),
isCapping: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
}
return s
}
func (s *BPSWClassMapWattsPistonCapping) newTask(offer *mesos.Offer, task def.Task, newTaskClass string) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
if !s.RecordPCP {
// Turn on logging
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Setting the task ID to the task. This is done so that we can consider each task to be different
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to list of tasks running on node
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if !s.ignoreWatts {
resources = append(resources, mesosutil.NewScalarResource("watts", task.ClassToWatts[newTaskClass]))
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
func (s *BPSWClassMapWattsPistonCapping) Disconnected(sched.SchedulerDriver) {
// Need to stop the capping process
s.ticker.Stop()
bpswClassMapWattsPistonMutex.Lock()
s.isCapping = false
bpswClassMapWattsPistonMutex.Unlock()
log.Println("Framework disconnected with master")
}
// mutex
var bpswClassMapWattsPistonMutex sync.Mutex
// go routine to cap eahc node in the cluster at regular intervals of time
var bpswClassMapWattsPistonCapValues = make(map[string]float64)
// Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead)
var bpswClassMapWattsPistonPreviousRoundedCapValues = make(map[string]int)
func (s *BPSWClassMapWattsPistonCapping) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap each node
bpswClassMapWattsPistonMutex.Lock()
for host, capValue := range bpswClassMapWattsPistonCapValues {
roundedCapValue := int(math.Floor(capValue + 0.5))
// has the cap value changed
if previousRoundedCap, ok := bpswClassMapWattsPistonPreviousRoundedCapValues[host]; ok {
if previousRoundedCap != roundedCapValue {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue)))
}
bpswClassMapWattsPistonPreviousRoundedCapValues[host] = roundedCapValue
}
} else {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5)))
}
bpswClassMapWattsPistonPreviousRoundedCapValues[host] = roundedCapValue
}
}
bpswClassMapWattsPistonMutex.Unlock()
}
}
}()
}
// Stop the capping
func (s *BPSWClassMapWattsPistonCapping) stopCapping() {
if s.isCapping {
log.Println("Stopping the capping.")
s.ticker.Stop()
bpswClassMapWattsPistonMutex.Lock()
s.isCapping = false
bpswClassMapWattsPistonMutex.Unlock()
}
}
func (s *BPSWClassMapWattsPistonCapping) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
// retrieving the total power for each host in the offers.
for _, offer := range offers {
if _, ok := s.totalPower[*offer.Hostname]; !ok {
_, _, offerWatts := OfferAgg(offer)
s.totalPower[*offer.Hostname] = offerWatts
}
}
// Displaying the totalPower
for host, tpower := range s.totalPower {
log.Printf("TotalPower[%s] = %f", host, tpower)
}
for _, offer := range offers {
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, longFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
tasks := []*mesos.TaskInfo{}
offerCPU, offerRAM, offerWatts := OfferAgg(offer)
taken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
// Store the partialLoad for host corresponding to this offer
// Once we can't fit any more tasks, we update the capValue for this host with partialLoad and then launch the fitted tasks.
partialLoad := 0.0
for i, task := range s.tasks {
// Check host if it exists
if task.Host != "" {
// Don't take offer if it doesn't match our task's host requirement
if !strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
for *task.Instances > 0 {
var nodeClass string
for _, attr := range offer.GetAttributes() {
if attr.GetName() == "class" {
nodeClass = attr.GetText().GetValue()
}
}
// Does the task fit
// OR lazy evaluation. If ignoreWatts is set to true, second statement won't
// be evaluated
if (s.ignoreWatts || (offerWatts >= (totalWatts + task.ClassToWatts[nodeClass]))) &&
(offerCPU >= (totalCPU + task.CPU)) &&
(offerRAM >= (totalRAM + task.RAM)) {
fmt.Println("Watts being used: ", task.ClassToWatts[nodeClass])
taken = true
totalWatts += task.ClassToWatts[nodeClass]
totalCPU += task.CPU
totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task, nodeClass)
tasks = append(tasks, taskToSchedule)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
partialLoad += ((task.Watts * constants.CapMargin) / s.totalPower[*offer.Hostname]) * 100
if *task.Instances <= 0 {
// All instances of task have been scheduled. Remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) <= 0 {
log.Println("Done scheduling all tasks")
close(s.Shutdown)
}
}
} else {
break // Continue on to the next task
}
}
}
if taken {
// Updating the cap value for offer.Hostname
bpswClassMapWattsPistonMutex.Lock()
bpswClassMapWattsPistonCapValues[*offer.Hostname] += partialLoad
bpswClassMapWattsPistonMutex.Unlock()
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, defaultFilter)
} else {
// If there was no match for task
log.Println("There is not enough resources to launch task: ")
cpus, mem, watts := OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, defaultFilter)
}
}
}
// Remove finished task from the taskMonitor
func (s *BPSWClassMapWattsPistonCapping) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) {
hostOfFinishedTask := ""
indexOfFinishedTask := -1
found := false
var finishedTask def.Task
for host, tasks := range s.taskMonitor {
for i, task := range tasks {
if task.TaskID == finishedTaskID {
hostOfFinishedTask = host
indexOfFinishedTask = i
found = true
}
}
if found {
break
}
}
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask]
log.Printf("Removing task with TaskID [%s] from the list of running tasks\n",
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
} else {
return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor")
}
return finishedTask, hostOfFinishedTask, nil
}
func (s *BPSWClassMapWattsPistonCapping) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
bpswClassMapWattsPistonMutex.Lock()
s.tasksRunning++
bpswClassMapWattsPistonMutex.Unlock()
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Deleting the task from the taskMonitor
finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value)
if err != nil {
log.Println(err)
}
// Need to update the cap values for host of the finishedTask
bpswClassMapWattsPistonMutex.Lock()
bpswClassMapWattsPistonCapValues[hostOfFinishedTask] -= ((finishedTask.Watts * constants.CapMargin) / s.totalPower[hostOfFinishedTask]) * 100
// Checking to see if the cap value has become 0, in which case we uncap the host.
if int(math.Floor(bpswClassMapWattsPistonCapValues[hostOfFinishedTask]+0.5)) == 0 {
bpswClassMapWattsPistonCapValues[hostOfFinishedTask] = 100
}
s.tasksRunning--
bpswClassMapWattsPistonMutex.Unlock()
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
s.stopCapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}

View file

@ -0,0 +1,404 @@
package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/pcp"
"bitbucket.org/sunybingcloud/electron/rapl"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sort"
"strings"
"sync"
"time"
)
// Decides if to take an offer or not
func (*BPSWClassMapWattsProacCC) takeOffer(offer *mesos.Offer, task def.Task) bool {
cpus, mem, watts := OfferAgg(offer)
// TODO: Insert watts calculation here instead of taking them as parameter
if cpus >= task.CPU && mem >= task.RAM && watts >= task.Watts {
return true
}
return false
}
type BPSWClassMapWattsProacCC struct {
base // Type embedding to inherit common functions
tasksCreated int
tasksRunning int
tasks []def.Task
metrics map[string]def.Metric
running map[string]map[string]bool
taskMonitor map[string][]def.Task
availablePower map[string]float64
totalPower map[string]float64
ignoreWatts bool
capper *pcp.ClusterwideCapper
ticker *time.Ticker
recapTicker *time.Ticker
isCapping bool // indicate whether we are currently performing cluster-wide capping.
isRecapping bool // indicate whether we are currently performing cluster-wide recapping.
// First set of PCP values are garbage values, signal to logger to start recording when we're
// about to schedule a new task
RecordPCP bool
// This channel is closed when the program receives an interrupt,
// signalling that the program should shut down
Shutdown chan struct{}
// This channel is closed after shutdown is closed, and only when all
// outstanding tasks have been cleaned up
Done chan struct{}
// Controls when to shutdown pcp logging
PCPLog chan struct{}
schedTrace *log.Logger
}
// New electron scheduler
func NewBPSWClassMapWattsProacCC(tasks []def.Task, ignoreWatts bool, schedTracePrefix string) *BPSWClassMapWattsProacCC {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPSWClassMapWattsProacCC{
tasks: tasks,
ignoreWatts: ignoreWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
taskMonitor: make(map[string][]def.Task),
availablePower: make(map[string]float64),
totalPower: make(map[string]float64),
RecordPCP: false,
capper: pcp.GetClusterwideCapperInstance(),
ticker: time.NewTicker(10 * time.Second),
recapTicker: time.NewTicker(20 * time.Second),
isCapping: false,
isRecapping: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
}
return s
}
// mutex
var bpswClassMapWattsProacCCMutex sync.Mutex
func (s *BPSWClassMapWattsProacCC) newTask(offer *mesos.Offer, task def.Task, newTaskClass string) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
if !s.RecordPCP {
// Turn on logging.
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Setting the task ID to the task. This is done so that we can consider each task to be different,
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to the list of tasks running on the node.
s.running[offer.GetSlaveId().GoString()][taskName] = true
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if !s.ignoreWatts {
resources = append(resources, mesosutil.NewScalarResource("watts", task.ClassToWatts[newTaskClass]))
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
func (s *BPSWClassMapWattsProacCC) Disconnected(sched.SchedulerDriver) {
// Need to stop the capping process
s.ticker.Stop()
s.recapTicker.Stop()
bpswClassMapWattsProacCCMutex.Lock()
s.isCapping = false
bpswClassMapWattsProacCCMutex.Unlock()
log.Println("Framework disconnected with master")
}
// go routine to cap the entire cluster in regular intervals of time.
var bpswClassMapWattsCapValue = 0.0 // initial value to indicate that we haven't capped the cluster yet.
func (s *BPSWClassMapWattsProacCC) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap the cluster to the bpswClassMapWattsCapValue.
bpswClassMapWattsProacCCMutex.Lock()
if bpswClassMapWattsCapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding capValue to nearest int.
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsCapValue+0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Capped the cluster to %d", int(math.Floor(bpswClassMapWattsCapValue+0.5)))
}
bpswClassMapWattsProacCCMutex.Unlock()
}
}
}()
}
// go routine to recap the entire cluster in regular intervals of time.
var bpswClassMapWattsRecapValue = 0.0 // The cluster-wide cap value when recapping
func (s *BPSWClassMapWattsProacCC) startRecapping() {
go func() {
for {
select {
case <-s.recapTicker.C:
bpswClassMapWattsProacCCMutex.Lock()
// If stopped performing cluster wide capping, then we need to recap
if s.isRecapping && bpswClassMapWattsRecapValue > 0.0 {
for _, host := range constants.Hosts {
// Rounding capValue to the nearest int
if err := rapl.Cap(host, "rapl", int(math.Floor(bpswClassMapWattsRecapValue+0.5))); err != nil {
log.Println(err)
}
}
log.Printf("Recapping the cluster to %d", int(math.Floor(bpswClassMapWattsRecapValue+0.5)))
}
// Setting recapping to false
s.isRecapping = false
bpswClassMapWattsProacCCMutex.Unlock()
}
}
}()
}
// Stop cluster wide capping
func (s *BPSWClassMapWattsProacCC) stopCapping() {
if s.isCapping {
log.Println("Stopping the cluster-wide capping.")
s.ticker.Stop()
bpswClassMapWattsProacCCMutex.Lock()
s.isCapping = false
s.isRecapping = true
bpswClassMapWattsProacCCMutex.Unlock()
}
}
// Stop the cluster wide recapping
func (s *BPSWClassMapWattsProacCC) stopRecapping() {
// If not capping, then definitely recapping.
if !s.isCapping && s.isRecapping {
log.Println("Stopping the cluster-wide re-capping.")
s.recapTicker.Stop()
bpswClassMapWattsProacCCMutex.Lock()
s.isRecapping = false
bpswClassMapWattsProacCCMutex.Unlock()
}
}
func (s *BPSWClassMapWattsProacCC) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
// retrieving the available power for all the hosts in the offers.
for _, offer := range offers {
_, _, offerWatts := OfferAgg(offer)
s.availablePower[*offer.Hostname] = offerWatts
// setting total power if the first time
if _, ok := s.totalPower[*offer.Hostname]; !ok {
s.totalPower[*offer.Hostname] = offerWatts
}
}
for host, tpower := range s.totalPower {
log.Printf("TotalPower[%s] = %f", host, tpower)
}
for _, offer := range offers {
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, longFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
tasks := []*mesos.TaskInfo{}
offerCPU, offerRAM, offerWatts := OfferAgg(offer)
taken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
for i, task := range s.tasks {
// Check host if it exists
if task.Host != "" {
// Don't take offer it it doesn't match our task's host requirement.
if strings.HasPrefix(*offer.Hostname, task.Host) {
continue
}
}
for *task.Instances > 0 {
var nodeClass string
for _, attr := range offer.GetAttributes() {
if attr.GetName() == "class" {
nodeClass = attr.GetText().GetValue()
}
}
// Does the task fit
// OR Lazy evaluation. If ignore watts is set to true, second statement won't
// be evaluated.
if (s.ignoreWatts || (offerWatts >= (totalWatts + task.ClassToWatts[nodeClass]))) &&
(offerCPU >= (totalCPU + task.CPU)) &&
(offerRAM >= (totalRAM + task.RAM)) {
// Capping the cluster if haven't yet started
if !s.isCapping {
bpswClassMapWattsProacCCMutex.Lock()
s.isCapping = true
bpswClassMapWattsProacCCMutex.Unlock()
s.startCapping()
}
fmt.Println("Watts being used: ", task.ClassToWatts[nodeClass])
tempCap, err := s.capper.FCFSDeterminedCap(s.totalPower, &task)
if err == nil {
bpswClassMapWattsProacCCMutex.Lock()
bpswClassMapWattsCapValue = tempCap
bpswClassMapWattsProacCCMutex.Unlock()
} else {
log.Println("Failed to determine new cluster-wide cap:")
log.Println(err)
}
taken = true
totalWatts += task.ClassToWatts[nodeClass]
totalCPU += task.CPU
totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task, nodeClass)
tasks = append(tasks, taskToSchedule)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
if *task.Instances <= 0 {
// All instances of task have been scheduled, remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) == 0 {
log.Println("Done scheduling all tasks.")
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
s.stopCapping()
s.startRecapping() // Load changes after every task finishes and hence, we need to change the capping of the cluster.
close(s.Shutdown)
}
}
} else {
break // Continue on to the next task
}
}
}
if taken {
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, defaultFilter)
} else {
// If there was no match for the task
fmt.Println("There is not enough resources to launch a task:")
cpus, mem, watts := OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, defaultFilter)
}
}
}
func (s *BPSWClassMapWattsProacCC) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
s.tasksRunning++
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Need to remove the task from the window
s.capper.TaskFinished(*status.TaskId.Value)
// Determining the new cluster wide recap value
tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
//tempCap, err := s.capper.CleverRecap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
if err == nil {
// If new determined cap value is different from the current recap value, then we need to recap
if int(math.Floor(tempCap+0.5)) != int(math.Floor(bpswClassMapWattsRecapValue+0.5)) {
bpswClassMapWattsRecapValue = tempCap
bpswClassMapWattsProacCCMutex.Lock()
s.isRecapping = true
bpswClassMapWattsProacCCMutex.Unlock()
log.Printf("Determined re-cap value: %f\n", bpswClassMapWattsRecapValue)
} else {
bpswClassMapWattsProacCCMutex.Lock()
s.isRecapping = false
bpswClassMapWattsProacCCMutex.Unlock()
}
} else {
log.Println(err)
}
s.tasksRunning--
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
// Need to stop the cluster-wide recapping
s.stopRecapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task[%s]", NameFor(status.State), *status.TaskId.Value)
}