Sycnrhonized operations that change the value of the cluster wide cap. Added cleverRecap(...) that determines the recap value of the cluster at a much finer level, taking into account the average load on each node in the cluster. Bug fix in cap.go -- closed the session once capping had been done. This prevented from running out of file descriptors.
This commit is contained in:
parent
cd644bbf69
commit
c1eaa453a2
4 changed files with 194 additions and 68 deletions
|
@ -34,7 +34,7 @@ var Power_threshold = 0.6 // Right now saying that a task will never be given le
|
||||||
So, if power required = 10W, the node would be capped to 75%*10W.
|
So, if power required = 10W, the node would be capped to 75%*10W.
|
||||||
This value can be changed upon convenience.
|
This value can be changed upon convenience.
|
||||||
*/
|
*/
|
||||||
var Cap_margin = 0.75
|
var Cap_margin = 0.70
|
||||||
|
|
||||||
// Modify the cap margin.
|
// Modify the cap margin.
|
||||||
func UpdateCapMargin(new_cap_margin float64) bool {
|
func UpdateCapMargin(new_cap_margin float64) bool {
|
||||||
|
@ -84,20 +84,4 @@ func UpdateWindowSize(new_window_size int) bool {
|
||||||
Window_size = new_window_size
|
Window_size = new_window_size
|
||||||
return true
|
return true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// // Time duration between successive cluster wide capping.
|
|
||||||
// var Clusterwide_cap_interval = 10 // Right now capping the cluster at 10 second intervals.
|
|
||||||
//
|
|
||||||
// // Modify the cluster wide capping interval. We can update the interval depending on the workload.
|
|
||||||
// // TODO: If the workload is heavy then we can set a longer interval, while on the other hand,
|
|
||||||
// // if the workload is light then a smaller interval is sufficient.
|
|
||||||
// func UpdateClusterwideCapInterval(new_interval int) bool {
|
|
||||||
// // Validation
|
|
||||||
// if new_interval == 0.0 {
|
|
||||||
// return false
|
|
||||||
// } else {
|
|
||||||
// Clusterwide_cap_interval = new_interval
|
|
||||||
// return true
|
|
||||||
// }
|
|
||||||
// }
|
|
|
@ -26,6 +26,7 @@ func Cap(host, username string, percentage int) error {
|
||||||
}
|
}
|
||||||
|
|
||||||
session, err := connection.NewSession()
|
session, err := connection.NewSession()
|
||||||
|
defer session.Close()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return errors.Wrap(err, "Failed to create session")
|
return errors.Wrap(err, "Failed to create session")
|
||||||
}
|
}
|
||||||
|
|
|
@ -16,6 +16,7 @@ import (
|
||||||
"container/list"
|
"container/list"
|
||||||
"errors"
|
"errors"
|
||||||
"github.com/montanaflynn/stats"
|
"github.com/montanaflynn/stats"
|
||||||
|
"log"
|
||||||
"sort"
|
"sort"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -110,6 +111,68 @@ func (capper clusterwideCapper) get_cap(running_average_to_total_power_percentag
|
||||||
return 100.0
|
return 100.0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
Recapping the entire cluster. Also, removing the finished task from the list of running tasks.
|
||||||
|
|
||||||
|
We would, at this point, have a better knowledge about the state of the cluster.
|
||||||
|
|
||||||
|
1. Calculate the total allocated watts per node in the cluster.
|
||||||
|
2. Compute the ratio of the total watts usage per node to the total power for that node.
|
||||||
|
This would give us the load on that node.
|
||||||
|
3. Now, compute the average load across all the nodes in the cluster.
|
||||||
|
This would be the cap value.
|
||||||
|
*/
|
||||||
|
func (capper clusterwideCapper) cleverRecap(total_power map[string]float64,
|
||||||
|
task_monitor map[string][]def.Task, finished_taskId string) (float64, error) {
|
||||||
|
// Validation
|
||||||
|
if total_power == nil || task_monitor == nil {
|
||||||
|
return 100.0, errors.New("Invalid argument: total_power, task_monitor")
|
||||||
|
}
|
||||||
|
// watts usage on each node in the cluster.
|
||||||
|
watts_usages := make(map[string][]float64)
|
||||||
|
host_of_finished_task := ""
|
||||||
|
index_of_finished_task := -1
|
||||||
|
for _, host := range constants.Hosts {
|
||||||
|
watts_usages[host] = []float64{0.0}
|
||||||
|
}
|
||||||
|
for host, tasks := range task_monitor {
|
||||||
|
for i, task := range tasks {
|
||||||
|
if task.TaskID == finished_taskId {
|
||||||
|
host_of_finished_task = host
|
||||||
|
index_of_finished_task = i
|
||||||
|
// Not considering this task
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
watts_usages[host] = append(watts_usages[host], float64(task.Watts) * constants.Cap_margin)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Updating task monitor
|
||||||
|
if host_of_finished_task != "" && index_of_finished_task != -1 {
|
||||||
|
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||||
|
task_monitor[host_of_finished_task][index_of_finished_task].TaskID)
|
||||||
|
task_monitor[host_of_finished_task] = append(task_monitor[host_of_finished_task][:index_of_finished_task],
|
||||||
|
task_monitor[host_of_finished_task][index_of_finished_task+1:]...)
|
||||||
|
}
|
||||||
|
|
||||||
|
// load on each node in the cluster.
|
||||||
|
loads := []float64{}
|
||||||
|
for host, usages := range watts_usages {
|
||||||
|
total_usage := 0.0
|
||||||
|
for _, usage := range usages {
|
||||||
|
total_usage += usage
|
||||||
|
}
|
||||||
|
loads = append(loads, total_usage / total_power[host])
|
||||||
|
}
|
||||||
|
// Now need to compute the average load.
|
||||||
|
total_load := 0.0
|
||||||
|
for _, load := range loads {
|
||||||
|
total_load += load
|
||||||
|
}
|
||||||
|
average_load := total_load / float64(len(loads)) // this would be the cap value.
|
||||||
|
return average_load, nil
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Recapping the entire cluster.
|
Recapping the entire cluster.
|
||||||
|
|
||||||
|
@ -128,18 +191,35 @@ func (capper clusterwideCapper) recap(total_power map[string]float64,
|
||||||
}
|
}
|
||||||
total_allocated_power := 0.0
|
total_allocated_power := 0.0
|
||||||
total_running_tasks := 0
|
total_running_tasks := 0
|
||||||
for _, tasks := range task_monitor {
|
|
||||||
index := 0
|
host_of_finished_task := ""
|
||||||
for i, task := range tasks {
|
index_of_finished_task := -1
|
||||||
if task.TaskID == finished_taskId {
|
for host, tasks := range task_monitor {
|
||||||
index = i
|
for i, task := range tasks {
|
||||||
continue
|
if task.TaskID == finished_taskId {
|
||||||
}
|
host_of_finished_task = host
|
||||||
total_allocated_power += float64(task.Watts) * constants.Cap_margin
|
index_of_finished_task = i
|
||||||
total_running_tasks++
|
// Not considering this task for the computation of total_allocated_power and total_running_tasks
|
||||||
}
|
continue
|
||||||
tasks = append(tasks[:index], tasks[index+1:]...)
|
}
|
||||||
}
|
total_allocated_power += (float64(task.Watts) * constants.Cap_margin)
|
||||||
|
total_running_tasks++
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Updating task monitor
|
||||||
|
if host_of_finished_task != "" && index_of_finished_task != -1 {
|
||||||
|
log.Printf("Removing task with task [%s] from the list of running tasks\n",
|
||||||
|
task_monitor[host_of_finished_task][index_of_finished_task].TaskID)
|
||||||
|
task_monitor[host_of_finished_task] = append(task_monitor[host_of_finished_task][:index_of_finished_task],
|
||||||
|
task_monitor[host_of_finished_task][index_of_finished_task+1:]...)
|
||||||
|
}
|
||||||
|
|
||||||
|
// For the last task, total_allocated_power and total_running_tasks would be 0
|
||||||
|
if total_allocated_power == 0 && total_running_tasks == 0 {
|
||||||
|
return 100, errors.New("No task running on the cluster.")
|
||||||
|
}
|
||||||
|
|
||||||
average := total_allocated_power / float64(total_running_tasks)
|
average := total_allocated_power / float64(total_running_tasks)
|
||||||
ratios := []float64{}
|
ratios := []float64{}
|
||||||
for _, tpower := range total_power {
|
for _, tpower := range total_power {
|
||||||
|
@ -211,7 +291,7 @@ func (capper clusterwideCapper) taskFinished(taskID string) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ee need to remove the task from the window.
|
// we need to remove the task from the window.
|
||||||
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
if task_to_remove, ok := task_element_to_remove.Value.(*def.Task); ok {
|
||||||
capper.window_of_tasks.Remove(task_element_to_remove)
|
capper.window_of_tasks.Remove(task_element_to_remove)
|
||||||
capper.number_of_tasks_in_window -= 1
|
capper.number_of_tasks_in_window -= 1
|
||||||
|
|
|
@ -12,14 +12,15 @@ import (
|
||||||
"log"
|
"log"
|
||||||
"math"
|
"math"
|
||||||
"strings"
|
"strings"
|
||||||
|
"sync"
|
||||||
"time"
|
"time"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Decides if to take an offer or not
|
// Decides if to take an offer or not
|
||||||
func (_ *ProactiveClusterwideCapFCFS) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
func (_ *ProactiveClusterwideCapFCFS) takeOffer(offer *mesos.Offer, task def.Task) bool {
|
||||||
offer_cpu, offer_mem, _ := OfferAgg(offer)
|
offer_cpu, offer_mem, offer_watts := OfferAgg(offer)
|
||||||
|
|
||||||
if offer_cpu >= task.CPU && offer_mem >= task.RAM {
|
if offer_cpu >= task.CPU && offer_mem >= task.RAM && offer_watts >= task.Watts {
|
||||||
return true
|
return true
|
||||||
}
|
}
|
||||||
return false
|
return false
|
||||||
|
@ -38,8 +39,9 @@ type ProactiveClusterwideCapFCFS struct {
|
||||||
ignoreWatts bool
|
ignoreWatts bool
|
||||||
capper *clusterwideCapper
|
capper *clusterwideCapper
|
||||||
ticker *time.Ticker
|
ticker *time.Ticker
|
||||||
|
recapTicker *time.Ticker
|
||||||
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
isCapping bool // indicate whether we are currently performing cluster wide capping.
|
||||||
//lock *sync.Mutex
|
isRecapping bool // indicate whether we are currently performing cluster wide re-capping.
|
||||||
|
|
||||||
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
// First set of PCP values are garbage values, signal to logger to start recording when we're
|
||||||
// about to schedule the new task.
|
// about to schedule the new task.
|
||||||
|
@ -71,13 +73,17 @@ func NewProactiveClusterwideCapFCFS(tasks []def.Task, ignoreWatts bool) *Proacti
|
||||||
totalPower: make(map[string]float64),
|
totalPower: make(map[string]float64),
|
||||||
RecordPCP: false,
|
RecordPCP: false,
|
||||||
capper: getClusterwideCapperInstance(),
|
capper: getClusterwideCapperInstance(),
|
||||||
ticker: time.NewTicker(5 * time.Second),
|
ticker: time.NewTicker(10 * time.Second),
|
||||||
|
recapTicker: time.NewTicker(20 * time.Second),
|
||||||
isCapping: false,
|
isCapping: false,
|
||||||
//lock: new(sync.Mutex),
|
isRecapping: false,
|
||||||
}
|
}
|
||||||
return s
|
return s
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// mutex
|
||||||
|
var mutex sync.Mutex
|
||||||
|
|
||||||
func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
|
||||||
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
|
||||||
s.tasksCreated++
|
s.tasksCreated++
|
||||||
|
@ -95,10 +101,14 @@ func (s *ProactiveClusterwideCapFCFS) newTask(offer *mesos.Offer, task def.Task)
|
||||||
|
|
||||||
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
// Setting the task ID to the task. This is done so that we can consider each task to be different,
|
||||||
// even though they have the same parameters.
|
// even though they have the same parameters.
|
||||||
task.SetTaskID(*proto.String(taskName))
|
task.SetTaskID(*proto.String("electron-" + taskName))
|
||||||
// Add task to the list of tasks running on the node.
|
// Add task to the list of tasks running on the node.
|
||||||
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
s.running[offer.GetSlaveId().GoString()][taskName] = true
|
||||||
s.taskMonitor[offer.GetSlaveId().GoString()] = []def.Task{task}
|
if len(s.taskMonitor[offer.GetSlaveId().GoString()]) == 0 {
|
||||||
|
s.taskMonitor[offer.GetSlaveId().GoString()] = []def.Task{task}
|
||||||
|
} else {
|
||||||
|
s.taskMonitor[offer.GetSlaveId().GoString()] = append(s.taskMonitor[offer.GetSlaveId().GoString()], task)
|
||||||
|
}
|
||||||
|
|
||||||
resources := []*mesos.Resource{
|
resources := []*mesos.Resource{
|
||||||
mesosutil.NewScalarResource("cpus", task.CPU),
|
mesosutil.NewScalarResource("cpus", task.CPU),
|
||||||
|
@ -143,7 +153,10 @@ func (s *ProactiveClusterwideCapFCFS) Reregistered(_ sched.SchedulerDriver, mast
|
||||||
func (s *ProactiveClusterwideCapFCFS) Disconnected(sched.SchedulerDriver) {
|
func (s *ProactiveClusterwideCapFCFS) Disconnected(sched.SchedulerDriver) {
|
||||||
// Need to stop the capping process.
|
// Need to stop the capping process.
|
||||||
s.ticker.Stop()
|
s.ticker.Stop()
|
||||||
|
s.recapTicker.Stop()
|
||||||
|
mutex.Lock()
|
||||||
s.isCapping = false
|
s.isCapping = false
|
||||||
|
mutex.Unlock()
|
||||||
log.Println("Framework disconnected with master")
|
log.Println("Framework disconnected with master")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -155,20 +168,44 @@ func (s *ProactiveClusterwideCapFCFS) startCapping() {
|
||||||
select {
|
select {
|
||||||
case <-s.ticker.C:
|
case <-s.ticker.C:
|
||||||
// Need to cap the cluster to the currentCapValue.
|
// Need to cap the cluster to the currentCapValue.
|
||||||
|
mutex.Lock()
|
||||||
if currentCapValue > 0.0 {
|
if currentCapValue > 0.0 {
|
||||||
//mutex.Lock()
|
|
||||||
//s.lock.Lock()
|
|
||||||
for _, host := range constants.Hosts {
|
for _, host := range constants.Hosts {
|
||||||
// Rounding curreCapValue to the nearest int.
|
// Rounding curreCapValue to the nearest int.
|
||||||
if err := rapl.Cap(host, "rapl", int(math.Floor(currentCapValue+0.5))); err != nil {
|
if err := rapl.Cap(host, "rapl", int(math.Floor(currentCapValue+0.5))); err != nil {
|
||||||
fmt.Println(err)
|
log.Println(err)
|
||||||
} else {
|
|
||||||
fmt.Printf("Successfully capped %s to %f%\n", host, currentCapValue)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
//mutex.Unlock()
|
log.Printf("Capped the cluster to %d", int(math.Floor(currentCapValue+0.5)))
|
||||||
//s.lock.Unlock()
|
|
||||||
}
|
}
|
||||||
|
mutex.Unlock()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}()
|
||||||
|
}
|
||||||
|
|
||||||
|
// go routine to cap the entire cluster in regular intervals of time.
|
||||||
|
var recapValue = 0.0 // The cluster wide cap value when recapping.
|
||||||
|
func (s *ProactiveClusterwideCapFCFS) startRecapping() {
|
||||||
|
go func() {
|
||||||
|
for {
|
||||||
|
select {
|
||||||
|
case <-s.recapTicker.C:
|
||||||
|
mutex.Lock()
|
||||||
|
// If stopped performing cluster wide capping then we need to explicitly cap the entire cluster.
|
||||||
|
//if !s.isCapping && s.isRecapping && recapValue > 0.0 {
|
||||||
|
if s.isRecapping && recapValue > 0.0 {
|
||||||
|
for _, host := range constants.Hosts {
|
||||||
|
// Rounding curreCapValue to the nearest int.
|
||||||
|
if err := rapl.Cap(host, "rapl", int(math.Floor(recapValue+0.5))); err != nil {
|
||||||
|
log.Println(err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
log.Printf("Recapped the cluster to %d", int(math.Floor(recapValue+0.5)))
|
||||||
|
}
|
||||||
|
// setting recapping to false
|
||||||
|
s.isRecapping = false
|
||||||
|
mutex.Unlock()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
@ -179,7 +216,22 @@ func (s *ProactiveClusterwideCapFCFS) stopCapping() {
|
||||||
if s.isCapping {
|
if s.isCapping {
|
||||||
log.Println("Stopping the cluster wide capping.")
|
log.Println("Stopping the cluster wide capping.")
|
||||||
s.ticker.Stop()
|
s.ticker.Stop()
|
||||||
|
mutex.Lock()
|
||||||
s.isCapping = false
|
s.isCapping = false
|
||||||
|
s.isRecapping = true
|
||||||
|
mutex.Unlock()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Stop cluster wide Recapping
|
||||||
|
func (s *ProactiveClusterwideCapFCFS) stopRecapping() {
|
||||||
|
// If not capping, then definitely recapping.
|
||||||
|
if !s.isCapping && s.isRecapping {
|
||||||
|
log.Println("Stopping the cluster wide re-capping.")
|
||||||
|
s.recapTicker.Stop()
|
||||||
|
mutex.Lock()
|
||||||
|
s.isRecapping = false
|
||||||
|
mutex.Unlock()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -198,10 +250,7 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
}
|
}
|
||||||
|
|
||||||
for host, tpower := range s.totalPower {
|
for host, tpower := range s.totalPower {
|
||||||
fmt.Printf("TotalPower[%s] = %f\n", host, tpower)
|
log.Printf("TotalPower[%s] = %f", host, tpower)
|
||||||
}
|
|
||||||
for host, apower := range s.availablePower {
|
|
||||||
fmt.Printf("AvailablePower[%s] = %f\n", host, apower)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, offer := range offers {
|
for _, offer := range offers {
|
||||||
|
@ -227,10 +276,7 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
TODO: We can choose to cap the cluster only if the clusterwide cap varies more than the current clusterwide cap.
|
TODO: We can choose to cap the cluster only if the clusterwide cap varies more than the current clusterwide cap.
|
||||||
Although this sounds like a better approach, it only works when the resource requirements of neighbouring tasks are similar.
|
Although this sounds like a better approach, it only works when the resource requirements of neighbouring tasks are similar.
|
||||||
*/
|
*/
|
||||||
//offer_cpu, offer_ram, _ := OfferAgg(offer)
|
|
||||||
|
|
||||||
taken := false
|
taken := false
|
||||||
//var mutex sync.Mutex
|
|
||||||
|
|
||||||
for i, task := range s.tasks {
|
for i, task := range s.tasks {
|
||||||
// Don't take offer if it doesn't match our task's host requirement.
|
// Don't take offer if it doesn't match our task's host requirement.
|
||||||
|
@ -242,27 +288,26 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
if s.takeOffer(offer, task) {
|
if s.takeOffer(offer, task) {
|
||||||
// Capping the cluster if haven't yet started,
|
// Capping the cluster if haven't yet started,
|
||||||
if !s.isCapping {
|
if !s.isCapping {
|
||||||
s.startCapping()
|
mutex.Lock()
|
||||||
s.isCapping = true
|
s.isCapping = true
|
||||||
|
mutex.Unlock()
|
||||||
|
s.startCapping()
|
||||||
}
|
}
|
||||||
taken = true
|
taken = true
|
||||||
//mutex.Lock()
|
|
||||||
//s.lock.Lock()
|
|
||||||
//tempCap, err := s.capper.fcfsDetermineCap(s.availablePower, &task)
|
|
||||||
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
tempCap, err := s.capper.fcfsDetermineCap(s.totalPower, &task)
|
||||||
|
|
||||||
if err == nil {
|
if err == nil {
|
||||||
|
mutex.Lock()
|
||||||
currentCapValue = tempCap
|
currentCapValue = tempCap
|
||||||
|
mutex.Unlock()
|
||||||
} else {
|
} else {
|
||||||
fmt.Printf("Failed to determine new cluster wide cap: ")
|
log.Printf("Failed to determine new cluster wide cap: ")
|
||||||
fmt.Println(err)
|
log.Println(err)
|
||||||
}
|
}
|
||||||
//mutex.Unlock()
|
log.Printf("Starting on [%s]\n", offer.GetHostname())
|
||||||
//s.lock.Unlock()
|
|
||||||
fmt.Printf("Starting on [%s]\n", offer.GetHostname())
|
|
||||||
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
to_schedule := []*mesos.TaskInfo{s.newTask(offer, task)}
|
||||||
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, to_schedule, defaultFilter)
|
||||||
fmt.Printf("Inst: %d", *task.Instances)
|
log.Printf("Inst: %d", *task.Instances)
|
||||||
*task.Instances--
|
*task.Instances--
|
||||||
if *task.Instances <= 0 {
|
if *task.Instances <= 0 {
|
||||||
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
// All instances of the task have been scheduled. Need to remove it from the list of tasks to schedule.
|
||||||
|
@ -273,6 +318,7 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
log.Println("Done scheduling all tasks")
|
log.Println("Done scheduling all tasks")
|
||||||
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
// Need to stop the cluster wide capping as there aren't any more tasks to schedule.
|
||||||
s.stopCapping()
|
s.stopCapping()
|
||||||
|
s.startRecapping() // Load changes after every task finishes and hence we need to change the capping of the cluster.
|
||||||
close(s.Shutdown)
|
close(s.Shutdown)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -284,7 +330,7 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
|
|
||||||
// If no task fit the offer, then declining the offer.
|
// If no task fit the offer, then declining the offer.
|
||||||
if !taken {
|
if !taken {
|
||||||
fmt.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
log.Printf("There is not enough resources to launch a task on Host: %s\n", offer.GetHostname())
|
||||||
cpus, mem, watts := OfferAgg(offer)
|
cpus, mem, watts := OfferAgg(offer)
|
||||||
|
|
||||||
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
|
||||||
|
@ -294,7 +340,7 @@ func (s *ProactiveClusterwideCapFCFS) ResourceOffers(driver sched.SchedulerDrive
|
||||||
}
|
}
|
||||||
|
|
||||||
func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
|
||||||
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
|
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
|
||||||
|
|
||||||
if *status.State == mesos.TaskState_TASK_RUNNING {
|
if *status.State == mesos.TaskState_TASK_RUNNING {
|
||||||
s.tasksRunning++
|
s.tasksRunning++
|
||||||
|
@ -302,17 +348,32 @@ func (s *ProactiveClusterwideCapFCFS) StatusUpdate(driver sched.SchedulerDriver,
|
||||||
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
|
||||||
// Need to remove the task from the window of tasks.
|
// Need to remove the task from the window of tasks.
|
||||||
s.capper.taskFinished(*status.TaskId.Value)
|
s.capper.taskFinished(*status.TaskId.Value)
|
||||||
//currentCapValue, _ = s.capper.recap(s.availablePower, s.taskMonitor, *status.TaskId.Value)
|
|
||||||
// Determining the new cluster wide cap.
|
// Determining the new cluster wide cap.
|
||||||
currentCapValue, _ = s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
tempCap, err := s.capper.recap(s.totalPower, s.taskMonitor, *status.TaskId.Value)
|
||||||
log.Printf("Recapping the cluster to %f\n", currentCapValue)
|
if err == nil {
|
||||||
|
// if new determined cap value is different from the current recap value then we need to recap.
|
||||||
|
if int(math.Floor(tempCap+0.5)) != int(math.Floor(recapValue+0.5)) {
|
||||||
|
recapValue = tempCap
|
||||||
|
mutex.Lock()
|
||||||
|
s.isRecapping = true
|
||||||
|
mutex.Unlock()
|
||||||
|
log.Printf("Determined re-cap value: %f\n", recapValue)
|
||||||
|
} else {
|
||||||
|
mutex.Lock()
|
||||||
|
s.isRecapping = false
|
||||||
|
mutex.Unlock()
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Not updating currentCapValue
|
||||||
|
log.Println(err)
|
||||||
|
}
|
||||||
|
|
||||||
s.tasksRunning--
|
s.tasksRunning--
|
||||||
if s.tasksRunning == 0 {
|
if s.tasksRunning == 0 {
|
||||||
select {
|
select {
|
||||||
case <-s.Shutdown:
|
case <-s.Shutdown:
|
||||||
// Need to stop the capping process.
|
// Need to stop the capping process.
|
||||||
s.stopCapping()
|
s.stopRecapping()
|
||||||
close(s.Done)
|
close(s.Done)
|
||||||
default:
|
default:
|
||||||
}
|
}
|
||||||
|
|
Reference in a new issue