This repository has been archived on 2024-04-10. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
elektron/schedulers/binpackedpistoncapping.go

397 lines
12 KiB
Go

package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/rapl"
"bitbucket.org/sunybingcloud/electron/utilities/mesosUtils"
"bitbucket.org/sunybingcloud/electron/utilities/offerUtils"
"errors"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sync"
"time"
)
/*
Piston Capper implements the Scheduler interface
This is basically extending the BinPacking algorithm to also cap each node at a different values,
corresponding to the load on that node.
*/
type BinPackedPistonCapper struct {
base // Type embedded to inherit common functions
taskMonitor map[string][]def.Task
totalPower map[string]float64
ticker *time.Ticker
isCapping bool
}
// New electron scheduler.
func NewBinPackedPistonCapper(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string,
classMapWatts bool) *BinPackedPistonCapper {
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BinPackedPistonCapper{
base: base{
tasks: tasks,
wattsAsAResource: wattsAsAResource,
classMapWatts: classMapWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
RecordPCP: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
},
taskMonitor: make(map[string][]def.Task),
totalPower: make(map[string]float64),
ticker: time.NewTicker(5 * time.Second),
isCapping: false,
}
return s
}
// check whether task fits the offer or not.
func (s *BinPackedPistonCapper) takeOffer(offer *mesos.Offer, offerWatts float64, offerCPU float64, offerRAM float64,
totalWatts float64, totalCPU float64, totalRAM float64, task def.Task) bool {
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
if err != nil {
// Error in determining wattsToConsider
log.Fatal(err)
}
if (!s.wattsAsAResource || (offerWatts >= (totalWatts + wattsConsideration))) &&
(offerCPU >= (totalCPU + task.CPU)) &&
(offerRAM >= (totalRAM + task.RAM)) {
return true
} else {
return false
}
}
// mutex
var bpPistonMutex sync.Mutex
func (s *BinPackedPistonCapper) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
if !s.RecordPCP {
// Turn on logging
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Setting the task ID to the task. This is done so that we can consider each task to be different,
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to list of tasks running on node
s.running[offer.GetSlaveId().GoString()][taskName] = true
// Adding the task to the taskMonitor
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if s.wattsAsAResource {
if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil {
log.Printf("Watts considered for host[%s] and task[%s] = %f", *offer.Hostname, task.Name, wattsToConsider)
resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider))
} else {
// Error in determining wattsConsideration
log.Fatal(err)
}
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
func (s *BinPackedPistonCapper) Disconnected(sched.SchedulerDriver) {
// Need to stop the capping process
s.ticker.Stop()
bpPistonMutex.Lock()
s.isCapping = false
bpPistonMutex.Unlock()
log.Println("Framework disconnected with master")
}
// go routine to cap the each node in the cluster at regular intervals of time.
var bpPistonCapValues = make(map[string]float64)
// Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead)
var bpPistonPreviousRoundedCapValues = make(map[string]float64)
func (s *BinPackedPistonCapper) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap each node
bpPistonMutex.Lock()
for host, capValue := range bpPistonCapValues {
roundedCapValue := float64(int(math.Floor(capValue + 0.5)))
// has the cap value changed
if prevRoundedCap, ok := bpPistonPreviousRoundedCapValues[host]; ok {
if prevRoundedCap != roundedCapValue {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host,
int(math.Floor(capValue+0.5)))
}
bpPistonPreviousRoundedCapValues[host] = roundedCapValue
}
} else {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5)))
}
bpPistonPreviousRoundedCapValues[host] = roundedCapValue
}
}
bpPistonMutex.Unlock()
}
}
}()
}
// Stop the capping
func (s *BinPackedPistonCapper) stopCapping() {
if s.isCapping {
log.Println("Stopping the capping.")
s.ticker.Stop()
bpPistonMutex.Lock()
s.isCapping = false
bpPistonMutex.Unlock()
}
}
func (s *BinPackedPistonCapper) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
// retrieving the total power for each host in the offers
for _, offer := range offers {
offerUtils.UpdateEnvironment(offer)
if _, ok := s.totalPower[*offer.Hostname]; !ok {
_, _, offerWatts := offerUtils.OfferAgg(offer)
s.totalPower[*offer.Hostname] = offerWatts
}
}
// Displaying the totalPower
for host, tpower := range s.totalPower {
log.Printf("TotalPower[%s] = %f", host, tpower)
}
/*
Piston capping strategy
Perform bin-packing of tasks on nodes in the cluster, making sure that no task is given less hard-limit resources than requested.
For each set of tasks that are scheduled, compute the new cap values for each host in the cluster.
At regular intervals of time, cap each node in the cluster.
*/
for _, offer := range offers {
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, mesosUtils.LongFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
fitTasks := []*mesos.TaskInfo{}
offerCPU, offerRAM, offerWatts := offerUtils.OfferAgg(offer)
offerTaken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
// Store the partialLoad for host corresponding to this offer.
// Once we can't fit any more tasks, we update capValue for this host with partialLoad and then launch the fit tasks.
partialLoad := 0.0
for i := 0; i < len(s.tasks); i++ {
task := s.tasks[i]
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
if err != nil {
// Error in determining wattsConsideration
log.Fatal(err)
}
// Don't take offer if it doesn't match our task's host requirement
if offerUtils.HostMismatch(*offer.Hostname, task.Host) {
continue
}
for *task.Instances > 0 {
// Does the task fit
if s.takeOffer(offer, offerWatts, offerCPU, offerRAM,
totalWatts, totalCPU, totalRAM, task) {
// Start piston capping if haven't started yet
if !s.isCapping {
s.isCapping = true
s.startCapping()
}
offerTaken = true
totalWatts += wattsConsideration
totalCPU += task.CPU
totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task)
fitTasks = append(fitTasks, taskToSchedule)
log.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
// updating the cap value for offer.Hostname
partialLoad += ((wattsConsideration * constants.Tolerance) / s.totalPower[*offer.Hostname]) * 100
if *task.Instances <= 0 {
// All instances of task have been scheduled. Remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) <= 0 {
log.Println("Done scheduling all tasks")
close(s.Shutdown)
}
}
} else {
break // Continue on to next task
}
}
}
if offerTaken {
// Updating the cap value for offer.Hostname
bpPistonMutex.Lock()
bpPistonCapValues[*offer.Hostname] += partialLoad
bpPistonMutex.Unlock()
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, fitTasks, mesosUtils.DefaultFilter)
} else {
// If there was no match for task
log.Println("There is not enough resources to launch task: ")
cpus, mem, watts := offerUtils.OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter)
}
}
}
// Remove finished task from the taskMonitor
func (s *BinPackedPistonCapper) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) {
hostOfFinishedTask := ""
indexOfFinishedTask := -1
found := false
var finishedTask def.Task
for host, tasks := range s.taskMonitor {
for i, task := range tasks {
if task.TaskID == finishedTaskID {
hostOfFinishedTask = host
indexOfFinishedTask = i
found = true
}
}
if found {
break
}
}
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask]
log.Printf("Removing task with TaskID [%s] from the list of running tasks\n",
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
} else {
return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor")
}
return finishedTask, hostOfFinishedTask, nil
}
func (s *BinPackedPistonCapper) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]\n", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
bpPistonMutex.Lock()
s.tasksRunning++
bpPistonMutex.Unlock()
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Deleting the task from the taskMonitor
finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value)
if err != nil {
log.Println(err)
}
// Need to determine the watts consideration for the finishedTask
var wattsConsideration float64
if s.classMapWatts {
wattsConsideration = finishedTask.ClassToWatts[hostToPowerClass(hostOfFinishedTask)]
} else {
wattsConsideration = finishedTask.Watts
}
// Need to update the cap values for host of the finishedTask
bpPistonMutex.Lock()
bpPistonCapValues[hostOfFinishedTask] -= ((wattsConsideration * constants.Tolerance) / s.totalPower[hostOfFinishedTask]) * 100
// Checking to see if the cap value has become 0, in which case we uncap the host.
if int(math.Floor(bpPistonCapValues[hostOfFinishedTask]+0.5)) == 0 {
bpPistonCapValues[hostOfFinishedTask] = 100
}
s.tasksRunning--
bpPistonMutex.Unlock()
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
s.stopCapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}