This repository has been archived on 2024-04-10. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
elektron/schedulers/bpswMaxMinPistonCapping.go

436 lines
13 KiB
Go

package schedulers
import (
"bitbucket.org/sunybingcloud/electron/constants"
"bitbucket.org/sunybingcloud/electron/def"
"bitbucket.org/sunybingcloud/electron/rapl"
"bitbucket.org/sunybingcloud/electron/utilities/mesosUtils"
"bitbucket.org/sunybingcloud/electron/utilities/offerUtils"
"errors"
"fmt"
"github.com/golang/protobuf/proto"
mesos "github.com/mesos/mesos-go/mesosproto"
"github.com/mesos/mesos-go/mesosutil"
sched "github.com/mesos/mesos-go/scheduler"
"log"
"math"
"os"
"sort"
"sync"
"time"
)
// Decides if to take an offer or not
func (s *BPSWMaxMinPistonCapping) takeOffer(offer *mesos.Offer, task def.Task,
totalCPU, totalRAM, totalWatts float64) bool {
cpus, mem, watts := offerUtils.OfferAgg(offer)
//TODO: Insert watts calculation here instead of taking them as a parameter
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
if err != nil {
// Error in determining wattsConsideration
log.Fatal(err)
}
if (cpus >= (totalCPU + task.CPU)) && (mem >= (totalRAM + task.RAM)) &&
(!s.wattsAsAResource || (watts >= (totalWatts + wattsConsideration))) {
return true
}
return false
}
type BPSWMaxMinPistonCapping struct {
base //Type embedding to inherit common functions
taskMonitor map[string][]def.Task
totalPower map[string]float64
ticker *time.Ticker
isCapping bool
}
// New electron scheduler
func NewBPSWMaxMinPistonCapping(tasks []def.Task, wattsAsAResource bool, schedTracePrefix string,
classMapWatts bool) *BPSWMaxMinPistonCapping {
sort.Sort(def.WattsSorter(tasks))
logFile, err := os.Create("./" + schedTracePrefix + "_schedTrace.log")
if err != nil {
log.Fatal(err)
}
s := &BPSWMaxMinPistonCapping{
base: base{
tasks: tasks,
wattsAsAResource: wattsAsAResource,
classMapWatts: classMapWatts,
Shutdown: make(chan struct{}),
Done: make(chan struct{}),
PCPLog: make(chan struct{}),
running: make(map[string]map[string]bool),
RecordPCP: false,
schedTrace: log.New(logFile, "", log.LstdFlags),
},
taskMonitor: make(map[string][]def.Task),
totalPower: make(map[string]float64),
ticker: time.NewTicker(5 * time.Second),
isCapping: false,
}
return s
}
func (s *BPSWMaxMinPistonCapping) newTask(offer *mesos.Offer, task def.Task) *mesos.TaskInfo {
taskName := fmt.Sprintf("%s-%d", task.Name, *task.Instances)
s.tasksCreated++
// Start recording only when we're creating the first task
if !s.RecordPCP {
// Turn on logging
s.RecordPCP = true
time.Sleep(1 * time.Second) // Make sure we're recording by the time the first task starts
}
// If this is our first time running into this Agent
if _, ok := s.running[offer.GetSlaveId().GoString()]; !ok {
s.running[offer.GetSlaveId().GoString()] = make(map[string]bool)
}
// Add task to list of tasks running on node
s.running[offer.GetSlaveId().GoString()][taskName] = true
// Setting the task ID to the task. This is done so that we can consider each task to be different
// even though they have the same parameters.
task.SetTaskID(*proto.String("electron-" + taskName))
// Add task to list of tasks running on node
if len(s.taskMonitor[*offer.Hostname]) == 0 {
s.taskMonitor[*offer.Hostname] = []def.Task{task}
} else {
s.taskMonitor[*offer.Hostname] = append(s.taskMonitor[*offer.Hostname], task)
}
resources := []*mesos.Resource{
mesosutil.NewScalarResource("cpus", task.CPU),
mesosutil.NewScalarResource("mem", task.RAM),
}
if s.wattsAsAResource {
if wattsToConsider, err := def.WattsToConsider(task, s.classMapWatts, offer); err == nil {
log.Printf("Watts considered for host[%s] and task[%s] = %f", *offer.Hostname, task.Name, wattsToConsider)
resources = append(resources, mesosutil.NewScalarResource("watts", wattsToConsider))
} else {
// Error in determining wattsConsideration
log.Fatal(err)
}
}
return &mesos.TaskInfo{
Name: proto.String(taskName),
TaskId: &mesos.TaskID{
Value: proto.String("electron-" + taskName),
},
SlaveId: offer.SlaveId,
Resources: resources,
Command: &mesos.CommandInfo{
Value: proto.String(task.CMD),
},
Container: &mesos.ContainerInfo{
Type: mesos.ContainerInfo_DOCKER.Enum(),
Docker: &mesos.ContainerInfo_DockerInfo{
Image: proto.String(task.Image),
Network: mesos.ContainerInfo_DockerInfo_BRIDGE.Enum(), // Run everything isolated
},
},
}
}
func (s *BPSWMaxMinPistonCapping) Disconnected(sched.SchedulerDriver) {
// Need to stop the capping process
s.ticker.Stop()
bpMaxMinPistonCappingMutex.Lock()
s.isCapping = false
bpMaxMinPistonCappingMutex.Unlock()
log.Println("Framework disconnected with master")
}
// mutex
var bpMaxMinPistonCappingMutex sync.Mutex
// go routine to cap each node in the cluster at regular intervals of time
var bpMaxMinPistonCappingCapValues = make(map[string]float64)
// Storing the previous cap value for each host so as to not repeatedly cap the nodes to the same value. (reduces overhead)
var bpMaxMinPistonCappingPreviousRoundedCapValues = make(map[string]float64)
func (s *BPSWMaxMinPistonCapping) startCapping() {
go func() {
for {
select {
case <-s.ticker.C:
// Need to cap each node
bpMaxMinPistonCappingMutex.Lock()
for host, capValue := range bpMaxMinPistonCappingCapValues {
roundedCapValue := float64(int(math.Floor(capValue + 0.5)))
// has the cap value changed
if previousRoundedCap, ok := bpMaxMinPistonCappingPreviousRoundedCapValues[host]; ok {
if previousRoundedCap != roundedCapValue {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue)))
}
bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue
}
} else {
if err := rapl.Cap(host, "rapl", roundedCapValue); err != nil {
log.Println(err)
} else {
log.Printf("Capped [%s] at %d", host, int(math.Floor(capValue+0.5)))
}
bpMaxMinPistonCappingPreviousRoundedCapValues[host] = roundedCapValue
}
}
bpMaxMinPistonCappingMutex.Unlock()
}
}
}()
}
// Stop the capping
func (s *BPSWMaxMinPistonCapping) stopCapping() {
if s.isCapping {
log.Println("Stopping the capping.")
s.ticker.Stop()
bpMaxMinPistonCappingMutex.Lock()
s.isCapping = false
bpMaxMinPistonCappingMutex.Unlock()
}
}
// Determine if the remaining sapce inside of the offer is enough for
// the task we need to create. If it is, create a TaskInfo and return it.
func (s *BPSWMaxMinPistonCapping) CheckFit(
i int,
task def.Task,
wattsConsideration float64,
offer *mesos.Offer,
totalCPU *float64,
totalRAM *float64,
totalWatts *float64,
partialLoad *float64) (bool, *mesos.TaskInfo) {
// Does the task fit
if s.takeOffer(offer, task, *totalCPU, *totalRAM, *totalWatts) {
// Start piston capping if haven't started yet
if !s.isCapping {
s.isCapping = true
s.startCapping()
}
*totalWatts += wattsConsideration
*totalCPU += task.CPU
*totalRAM += task.RAM
log.Println("Co-Located with: ")
coLocated(s.running[offer.GetSlaveId().GoString()])
taskToSchedule := s.newTask(offer, task)
fmt.Println("Inst: ", *task.Instances)
s.schedTrace.Print(offer.GetHostname() + ":" + taskToSchedule.GetTaskId().GetValue())
*task.Instances--
*partialLoad += ((wattsConsideration * constants.Tolerance) / s.totalPower[*offer.Hostname]) * 100
if *task.Instances <= 0 {
// All instances of task have been scheduled, remove it
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
if len(s.tasks) <= 0 {
log.Println("Done scheduling all tasks")
close(s.Shutdown)
}
}
return true, taskToSchedule
}
return false, nil
}
func (s *BPSWMaxMinPistonCapping) ResourceOffers(driver sched.SchedulerDriver, offers []*mesos.Offer) {
log.Printf("Received %d resource offers", len(offers))
for _, offer := range offers {
offerUtils.UpdateEnvironment(offer)
select {
case <-s.Shutdown:
log.Println("Done scheduling tasks: declining offer on [", offer.GetHostname(), "]")
driver.DeclineOffer(offer.Id, mesosUtils.LongFilter)
log.Println("Number of tasks still running: ", s.tasksRunning)
continue
default:
}
tasks := []*mesos.TaskInfo{}
offerTaken := false
totalWatts := 0.0
totalCPU := 0.0
totalRAM := 0.0
// Store the partialLoad for host corresponding to this offer
// Once we can't fit any more tasks, we update the capValue for this host using partialLoad and then launch the fit tasks.
partialLoad := 0.0
// Assumes s.tasks is ordered in non-decreasing median max peak order
// Attempt to schedule a single instance of the heaviest workload available first
// Start from the back until one fits
for i := len(s.tasks) - 1; i >= 0; i-- {
task := s.tasks[i]
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
if err != nil {
// Error in determining wattsConsideration
log.Fatal(err)
}
// Don't take offer if it doesn't match our task's host requirement
if offerUtils.HostMismatch(*offer.Hostname, task.Host) {
continue
}
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer,
&totalCPU, &totalRAM, &totalWatts, &partialLoad)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
break
}
}
// Pack the rest of the offer with the smallest tasks
for i := 0; i < len(s.tasks); i++ {
task := s.tasks[i]
wattsConsideration, err := def.WattsToConsider(task, s.classMapWatts, offer)
if err != nil {
// Error in determining wattsConsideration
log.Fatal(err)
}
// Don't take offer if it doesn't match our task's host requirement
if offerUtils.HostMismatch(*offer.Hostname, task.Host) {
continue
}
for *task.Instances > 0 {
// TODO: Fix this so index doesn't need to be passed
taken, taskToSchedule := s.CheckFit(i, task, wattsConsideration, offer,
&totalCPU, &totalRAM, &totalWatts, &partialLoad)
if taken {
offerTaken = true
tasks = append(tasks, taskToSchedule)
} else {
break // Continue on to next task
}
}
}
if offerTaken {
// Updating the cap value for offer.Hostname
bpMaxMinPistonCappingMutex.Lock()
bpMaxMinPistonCappingCapValues[*offer.Hostname] += partialLoad
bpMaxMinPistonCappingMutex.Unlock()
log.Printf("Starting on [%s]\n", offer.GetHostname())
driver.LaunchTasks([]*mesos.OfferID{offer.Id}, tasks, mesosUtils.DefaultFilter)
} else {
// If there was no match for the task
fmt.Println("There is not enough resources to launch a task:")
cpus, mem, watts := offerUtils.OfferAgg(offer)
log.Printf("<CPU: %f, RAM: %f, Watts: %f>\n", cpus, mem, watts)
driver.DeclineOffer(offer.Id, mesosUtils.DefaultFilter)
}
}
}
// Remove finished task from the taskMonitor
func (s *BPSWMaxMinPistonCapping) deleteFromTaskMonitor(finishedTaskID string) (def.Task, string, error) {
hostOfFinishedTask := ""
indexOfFinishedTask := -1
found := false
var finishedTask def.Task
for host, tasks := range s.taskMonitor {
for i, task := range tasks {
if task.TaskID == finishedTaskID {
hostOfFinishedTask = host
indexOfFinishedTask = i
found = true
}
}
if found {
break
}
}
if hostOfFinishedTask != "" && indexOfFinishedTask != -1 {
finishedTask = s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask]
log.Printf("Removing task with TaskID [%s] from the list of running tasks\n",
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask].TaskID)
s.taskMonitor[hostOfFinishedTask] = append(s.taskMonitor[hostOfFinishedTask][:indexOfFinishedTask],
s.taskMonitor[hostOfFinishedTask][indexOfFinishedTask+1:]...)
} else {
return finishedTask, hostOfFinishedTask, errors.New("Finished Task not present in TaskMonitor")
}
return finishedTask, hostOfFinishedTask, nil
}
func (s *BPSWMaxMinPistonCapping) StatusUpdate(driver sched.SchedulerDriver, status *mesos.TaskStatus) {
log.Printf("Received task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
if *status.State == mesos.TaskState_TASK_RUNNING {
bpMaxMinPistonCappingMutex.Lock()
s.tasksRunning++
bpMaxMinPistonCappingMutex.Unlock()
} else if IsTerminal(status.State) {
delete(s.running[status.GetSlaveId().GoString()], *status.TaskId.Value)
// Deleting the task from the taskMonitor
finishedTask, hostOfFinishedTask, err := s.deleteFromTaskMonitor(*status.TaskId.Value)
if err != nil {
log.Println(err)
}
// Need to determine the watts consideration for the finishedTask
var wattsConsideration float64
if s.classMapWatts {
wattsConsideration = finishedTask.ClassToWatts[hostToPowerClass(hostOfFinishedTask)]
} else {
wattsConsideration = finishedTask.Watts
}
// Need to update the cap values for host of the finishedTask
bpMaxMinPistonCappingMutex.Lock()
bpMaxMinPistonCappingCapValues[hostOfFinishedTask] -= ((wattsConsideration * constants.Tolerance) / s.totalPower[hostOfFinishedTask]) * 100
// Checking to see if the cap value has become 0, in which case we uncap the host.
if int(math.Floor(bpMaxMinPistonCappingCapValues[hostOfFinishedTask]+0.5)) == 0 {
bpMaxMinPistonCappingCapValues[hostOfFinishedTask] = 100
}
s.tasksRunning--
bpMaxMinPistonCappingMutex.Unlock()
if s.tasksRunning == 0 {
select {
case <-s.Shutdown:
s.stopCapping()
close(s.Done)
default:
}
}
}
log.Printf("DONE: Task status [%s] for task [%s]", NameFor(status.State), *status.TaskId.Value)
}